BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23638965)

  • 1. MtQRRS1, an R-locus required for Medicago truncatula quantitative resistance to Ralstonia solanacearum.
    Ben C; Debellé F; Berges H; Bellec A; Jardinaud MF; Anson P; Huguet T; Gentzbittel L; Vailleau F
    New Phytol; 2013 Aug; 199(3):758-72. PubMed ID: 23638965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the interaction between the bacterial wilt pathogen Ralstonia solanacearum and the model legume plant Medicago truncatula.
    Vailleau F; Sartorel E; Jardinaud MF; Chardon F; Genin S; Huguet T; Gentzbittel L; Petitprez M
    Mol Plant Microbe Interact; 2007 Feb; 20(2):159-67. PubMed ID: 17313167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural diversity in the model legume Medicago truncatula allows identifying distinct genetic mechanisms conferring partial resistance to Verticillium wilt.
    Ben C; Toueni M; Montanari S; Tardin MC; Fervel M; Negahi A; Saint-Pierre L; Mathieu G; Gras MC; Noël D; Prospéri JM; Pilet-Nayel ML; Baranger A; Huguet T; Julier B; Rickauer M; Gentzbittel L
    J Exp Bot; 2013 Jan; 64(1):317-32. PubMed ID: 23213135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A local score approach improves GWAS resolution and detects minor QTL: application to Medicago truncatula quantitative disease resistance to multiple Aphanomyces euteiches isolates.
    Bonhomme M; Fariello MI; Navier H; Hajri A; Badis Y; Miteul H; Samac DA; Dumas B; Baranger A; Jacquet C; Pilet-Nayel ML
    Heredity (Edinb); 2019 Oct; 123(4):517-531. PubMed ID: 31138867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome-related genes.
    Djébali N; Jauneau A; Ameline-Torregrosa C; Chardon F; Jaulneau V; Mathé C; Bottin A; Cazaux M; Pilet-Nayel ML; Baranger A; Aouani ME; Esquerré-Tugayé MT; Dumas B; Huguet T; Jacquet C
    Mol Plant Microbe Interact; 2009 Sep; 22(9):1043-55. PubMed ID: 19656040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-density genome-wide association mapping implicates an F-box encoding gene in Medicago truncatula resistance to Aphanomyces euteiches.
    Bonhomme M; André O; Badis Y; Ronfort J; Burgarella C; Chantret N; Prosperi JM; Briskine R; Mudge J; Debéllé F; Navier H; Miteul H; Hajri A; Baranger A; Tiffin P; Dumas B; Pilet-Nayel ML; Young ND; Jacquet C
    New Phytol; 2014 Mar; 201(4):1328-1342. PubMed ID: 24283472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of resistance to cowpea aphid (Aphis craccivora Koch) in Medicago truncatula.
    Kamphuis LG; Gao L; Singh KB
    BMC Plant Biol; 2012 Jul; 12():101. PubMed ID: 22759788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a Major QTL (
    Du H; Wen C; Zhang X; Xu X; Yang J; Chen B; Geng S
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31771239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic dissection of resistance to anthracnose and powdery mildew in Medicago truncatula.
    Ameline-Torregrosa C; Cazaux M; Danesh D; Chardon F; Cannon SB; Esquerré-Tugayé MT; Dumas B; Young ND; Samac DA; Huguet T; Jacquet C
    Mol Plant Microbe Interact; 2008 Jan; 21(1):61-9. PubMed ID: 18052883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The symbiotic transcription factor MtEFD and cytokinins are positively acting in the Medicago truncatula and Ralstonia solanacearum pathogenic interaction.
    Moreau S; Fromentin J; Vailleau F; Vernié T; Huguet S; Balzergue S; Frugier F; Gamas P; Jardinaud MF
    New Phytol; 2014 Mar; 201(4):1343-1357. PubMed ID: 24325235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomics analysis of Medicago truncatula response to infection by the phytopathogenic bacterium Ralstonia solanacearum points to jasmonate and salicylate defence pathways.
    Yamchi A; Ben C; Rossignol M; Zareie SR; Mirlohi A; Sayed-Tabatabaei BE; Pichereaux C; Sarrafi A; Rickauer M; Gentzbittel L
    Cell Microbiol; 2018 Apr; 20(4):. PubMed ID: 29084417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of candidate gene markers associated to common bacterial blight resistance in common bean.
    Shi C; Yu K; Xie W; Perry G; Navabi A; Pauls KP; Miklas PN; Fourie D
    Theor Appl Genet; 2012 Nov; 125(7):1525-37. PubMed ID: 22798059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A complex network of additive and epistatic quantitative trait loci underlies natural variation of Arabidopsis thaliana quantitative disease resistance to Ralstonia solanacearum under heat stress.
    Aoun N; Desaint H; Boyrie L; Bonhomme M; Deslandes L; Berthomé R; Roux F
    Mol Plant Pathol; 2020 Nov; 21(11):1405-1420. PubMed ID: 32914940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula.
    Kamphuis LG; Lichtenzveig J; Oliver RP; Ellwood SR
    BMC Plant Biol; 2008 Mar; 8():30. PubMed ID: 18366746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine-mapping of a major QTL (Fwr1) for fusarium wilt resistance in radish.
    Yu X; Lu L; Ma Y; Chhapekar SS; Yi SY; Lim YP; Choi SR
    Theor Appl Genet; 2020 Jan; 133(1):329-340. PubMed ID: 31686113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of two novel and adjacent QTLs on chromosome B02 controlling resistance against bacterial wilt in peanut variety Zhonghua 6.
    Luo H; Pandey MK; Zhi Y; Zhang H; Xu S; Guo J; Wu B; Chen H; Ren X; Zhou X; Chen Y; Chen W; Huang L; Liu N; Sudini HK; Varshney RK; Lei Y; Liao B; Jiang H
    Theor Appl Genet; 2020 Apr; 133(4):1133-1148. PubMed ID: 31980836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tandem array of CBF/DREB1 genes is located in a major freezing tolerance QTL region on Medicago truncatula chromosome 6.
    Tayeh N; Bahrman N; Sellier H; Bluteau A; Blassiau C; Fourment J; Bellec A; Debellé F; Lejeune-Hénaut I; Delbreil B
    BMC Genomics; 2013 Nov; 14(1):814. PubMed ID: 24261852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A complex genetic network involving a broad-spectrum locus and strain-specific loci controls resistance to different pathotypes of Aphanomyces euteiches in Medicago truncatula.
    Hamon C; Baranger A; Miteul H; Lecointe R; Le Goff I; Deniot G; Onfroy C; Moussart A; Prosperi JM; Tivoli B; Delourme R; Pilet-Nayel ML
    Theor Appl Genet; 2010 Mar; 120(5):955-70. PubMed ID: 20012740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf morphology in Cowpea [Vigna unguiculata (L.) Walp]: QTL analysis, physical mapping and identifying a candidate gene using synteny with model legume species.
    Pottorff M; Ehlers JD; Fatokun C; Roberts PA; Close TJ
    BMC Genomics; 2012 Jun; 13():234. PubMed ID: 22691139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome sequencing and expression analysis in peanut reveal the potential mechanism response to Ralstonia solanacearum infection.
    Wang X; Qi F; Sun Z; Liu H; Wu Y; Wu X; Xu J; Liu H; Qin L; Wang Z; Sang S; Dong W; Huang B; Zheng Z; Zhang X
    BMC Plant Biol; 2024 Mar; 24(1):207. PubMed ID: 38515036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.