These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23638989)

  • 21. Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose.
    Gusakov AV; Salanovich TN; Antonov AI; Ustinov BB; Okunev ON; Burlingame R; Emalfarb M; Baez M; Sinitsyn AP
    Biotechnol Bioeng; 2007 Aug; 97(5):1028-38. PubMed ID: 17221887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mechanistic model for enzymatic saccharification of cellulose using continuous distribution kinetics II: cooperative enzyme action, solution kinetics, and product inhibition.
    Griggs AJ; Stickel JJ; Lischeske JJ
    Biotechnol Bioeng; 2012 Mar; 109(3):676-85. PubMed ID: 22034106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis.
    Kafle K; Shin H; Lee CM; Park S; Kim SH
    Sci Rep; 2015 Oct; 5():15102. PubMed ID: 26463274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Particle Size on the Kinetics of Enzymatic Hydrolysis of Microcrystalline Cotton Cellulose: a Modeling and Simulation Study.
    Gaikwad A
    Appl Biochem Biotechnol; 2019 Mar; 187(3):800-816. PubMed ID: 30084003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling intrinsic kinetics of enzymatic cellulose hydrolysis.
    Peri S; Karra S; Lee YY; Karim MN
    Biotechnol Prog; 2007; 23(3):626-37. PubMed ID: 17465526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellobiohydrolase and endoglucanase respond differently to surfactants during the hydrolysis of cellulose.
    Hsieh CW; Cannella D; Jørgensen H; Felby C; Thygesen LG
    Biotechnol Biofuels; 2015; 8():52. PubMed ID: 25829946
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: II. Quantification of inhibition and suitability of membrane reactors.
    Andrić P; Meyer AS; Jensen PA; Dam-Johansen K
    Biotechnol Adv; 2010; 28(3):407-25. PubMed ID: 20172020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular origins of reduced activity and binding commitment of processive cellulases and associated carbohydrate-binding proteins to cellulose III.
    Chundawat SPS; Nemmaru B; Hackl M; Brady SK; Hilton MA; Johnson MM; Chang S; Lang MJ; Huh H; Lee SH; Yarbrough JM; López CA; Gnanakaran S
    J Biol Chem; 2021; 296():100431. PubMed ID: 33610545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modelling of amorphous cellulose depolymerisation by cellulases, parametric studies and optimisation.
    Niu H; Shah N; Kontoravdi C
    Biochem Eng J; 2016 Jan; 105(Pt B):455-472. PubMed ID: 26865832
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A mechanistic model for enzymatic saccharification of cellulose using continuous distribution kinetics I: depolymerization by EGI and CBHI.
    Griggs AJ; Stickel JJ; Lischeske JJ
    Biotechnol Bioeng; 2012 Mar; 109(3):665-75. PubMed ID: 22034153
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates.
    Tu M; Chandra RP; Saddler JN
    Biotechnol Prog; 2007; 23(2):398-406. PubMed ID: 17378581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissecting and reconstructing synergism: in situ visualization of cooperativity among cellulases.
    Ganner T; Bubner P; Eibinger M; Mayrhofer C; Plank H; Nidetzky B
    J Biol Chem; 2012 Dec; 287(52):43215-22. PubMed ID: 23118223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of modified HCH-1 kinetic model for long-term enzymatic cellulose hydrolysis and comparison with literature models.
    Liang C; Gu C; Raftery J; Karim MN; Holtzapple M
    Biotechnol Biofuels; 2019; 12():34. PubMed ID: 30820244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect?
    Hu J; Arantes V; Saddler JN
    Biotechnol Biofuels; 2011 Oct; 4():36. PubMed ID: 21974832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A functionally based model for hydrolysis of cellulose by fungal cellulase.
    Zhang YH; Lynd LR
    Biotechnol Bioeng; 2006 Aug; 94(5):888-98. PubMed ID: 16685742
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose.
    Woodward J; Lima M; Lee NE
    Biochem J; 1988 Nov; 255(3):895-9. PubMed ID: 3214429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic modeling of enzymatic hydrolysis of cellulose in differently pretreated fibers from dairy manure.
    Liao W; Liu Y; Wen Z; Frear C; Chen S
    Biotechnol Bioeng; 2008 Oct; 101(3):441-51. PubMed ID: 18435483
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative characterization of all cellulosomal cellulases from
    Leis B; Held C; Bergkemper F; Dennemarck K; Steinbauer R; Reiter A; Mechelke M; Moerch M; Graubner S; Liebl W; Schwarz WH; Zverlov VV
    Biotechnol Biofuels; 2017; 10():240. PubMed ID: 29075324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellulose crystallinity--a key predictor of the enzymatic hydrolysis rate.
    Hall M; Bansal P; Lee JH; Realff MJ; Bommarius AS
    FEBS J; 2010 Mar; 277(6):1571-82. PubMed ID: 20148968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.