These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 23638989)
41. Evaluation of the factors affecting avicel reactivity using multi-stage enzymatic hydrolysis. Yu Z; Jameel H; Chang HM; Philips R; Park S Biotechnol Bioeng; 2012 May; 109(5):1131-9. PubMed ID: 22125215 [TBL] [Abstract][Full Text] [Related]
42. Time dependence of enzyme synergism during the degradation of model and natural lignocellulosic substrates. Malgas S; Thoresen M; van Dyk JS; Pletschke BI Enzyme Microb Technol; 2017 Aug; 103():1-11. PubMed ID: 28554379 [TBL] [Abstract][Full Text] [Related]
43. Simultaneous improvement of saccharification and ethanol production from crystalline cellulose by alleviation of irreversible adsorption of cellulase with a cell surface-engineered yeast strain. Matano Y; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2013 Mar; 97(5):2231-7. PubMed ID: 23184221 [TBL] [Abstract][Full Text] [Related]
44. Binding and hydrolysis properties of engineered cellobiohydrolases and endoglucanases. Lu X; Feng X; Li X; Zhao J Bioresour Technol; 2018 Nov; 267():235-241. PubMed ID: 30025319 [TBL] [Abstract][Full Text] [Related]
45. High-temperature enzymatic breakdown of cellulose. Wang H; Squina F; Segato F; Mort A; Lee D; Pappan K; Prade R Appl Environ Microbiol; 2011 Aug; 77(15):5199-206. PubMed ID: 21685160 [TBL] [Abstract][Full Text] [Related]
46. Inhibition of lignin-derived phenolic compounds to cellulase. Qin L; Li WC; Liu L; Zhu JQ; Li X; Li BZ; Yuan YJ Biotechnol Biofuels; 2016; 9():70. PubMed ID: 27006689 [TBL] [Abstract][Full Text] [Related]
47. A multiscale three-zone reactive mixing model for engineering a scale separation in enzymatic hydrolysis of cellulose. Chakraborty S; Raju S; Pal RK Bioresour Technol; 2014 Dec; 173():140-147. PubMed ID: 25299490 [TBL] [Abstract][Full Text] [Related]
48. Enzymatic hydrolysis of microcrystalline cellulose and pretreated wheat straw: a detailed comparison using convenient kinetic analysis. Monschein M; Reisinger C; Nidetzky B Bioresour Technol; 2013 Jan; 128():679-87. PubMed ID: 23220402 [TBL] [Abstract][Full Text] [Related]
49. Product inhibition of cellulases studied with 14C-labeled cellulose substrates. Teugjas H; Väljamäe P Biotechnol Biofuels; 2013 Jul; 6(1):104. PubMed ID: 23883520 [TBL] [Abstract][Full Text] [Related]
50. Enzymatic hydrolysis of cellulose using extracts from insects. Szentner K; Waśkiewicz A; Kaźmierczak S; Wojciechowicz T; Goliński P; Lewandowska E; Wasielewski O Carbohydr Res; 2019 Nov; 485():107811. PubMed ID: 31526927 [TBL] [Abstract][Full Text] [Related]
51. Quantification of bound and free enzymes during enzymatic hydrolysis and their reactivities on cellulose and lignocellulose. Yu Z; Jameel H; Chang HM; Philips R; Park S Bioresour Technol; 2013 Nov; 147():369-377. PubMed ID: 23999266 [TBL] [Abstract][Full Text] [Related]
52. Electron microscopic observation of cotton cellulose degradation by exo- and endo-type cellulases from Irpex lacteus. Hoshino E; Sasaki Y; Mori K; Okazaki M; Nisizawa K; Kanda T J Biochem; 1993 Aug; 114(2):236-45. PubMed ID: 8262905 [TBL] [Abstract][Full Text] [Related]
53. Dynamic changes of substrate reactivity and enzyme adsorption on partially hydrolyzed cellulose. Shi J; Wu D; Zhang L; Simmons BA; Singh S; Yang B; Wyman CE Biotechnol Bioeng; 2017 Mar; 114(3):503-515. PubMed ID: 27617791 [TBL] [Abstract][Full Text] [Related]
54. Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates. Peciulyte A; Anasontzis GE; Karlström K; Larsson PT; Olsson L Fungal Genet Biol; 2014 Nov; 72():64-72. PubMed ID: 25093270 [TBL] [Abstract][Full Text] [Related]
55. Recombinant Trichoderma harzianum endoglucanase I (Cel7B) is a highly acidic and promiscuous carbohydrate-active enzyme. Pellegrini VO; Serpa VI; Godoy AS; Camilo CM; Bernardes A; Rezende CA; Junior NP; Franco Cairo JP; Squina FM; Polikarpov I Appl Microbiol Biotechnol; 2015 Nov; 99(22):9591-604. PubMed ID: 26156238 [TBL] [Abstract][Full Text] [Related]
56. Structural properties of cellulose and cellulase reaction mechanism. Lee SB; Kim IH; Ryu DD; Taguchi H Biotechnol Bioeng; 1983 Jan; 25(1):33-51. PubMed ID: 18548537 [TBL] [Abstract][Full Text] [Related]
57. A discretized model for enzymatic hydrolysis of cellulose in a fed-batch process. Tervasmäki P; Sotaniemi V; Kangas J; Taskila S; Ojamo H; Tanskanen J Bioresour Technol; 2017 Mar; 227():112-124. PubMed ID: 28013127 [TBL] [Abstract][Full Text] [Related]
58. A new approach for modeling cellulase-cellulose adsorption and the kinetics of the enzymatic hydrolysis of microcrystalline cellulose. Nidetzky B; Steiner W Biotechnol Bioeng; 1993 Aug; 42(4):469-79. PubMed ID: 18613051 [TBL] [Abstract][Full Text] [Related]
59. The synergistic action of accessory enzymes enhances the hydrolytic potential of a "cellulase mixture" but is highly substrate specific. Hu J; Arantes V; Pribowo A; Saddler JN Biotechnol Biofuels; 2013 Aug; 6(1):112. PubMed ID: 23915398 [TBL] [Abstract][Full Text] [Related]
60. Improved enzymatic hydrolysis of microcrystalline cellulose (Avicel PH101) by polyethylene glycol addition. Ouyang J; Dong Z; Song X; Lee X; Chen M; Yong Q Bioresour Technol; 2010 Sep; 101(17):6685-91. PubMed ID: 20385489 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]