These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 23639408)
1. Characterization of anaerobic consortia coupled lignin depolymerization with biomethane generation. Wu YR; He J Bioresour Technol; 2013 Jul; 139():5-12. PubMed ID: 23639408 [TBL] [Abstract][Full Text] [Related]
2. Efficient methane production from agro-industrial residues using anaerobic fungal-rich consortia. Thongbunrod N; Chaiprasert P World J Microbiol Biotechnol; 2024 Jun; 40(8):239. PubMed ID: 38862848 [TBL] [Abstract][Full Text] [Related]
3. Microbial Diversity in Decaying Oil Palm Empty Fruit Bunches (OPEFB) and Isolation of Lignin-degrading Bacteria from a Tropical Environment. Tahir AA; Mohd Barnoh NF; Yusof N; Mohd Said NN; Utsumi M; Yen AM; Hashim H; Mohd Noor MJM; Akhir FNM; Mohamad SE; Sugiura N; Othman N; Zakaria Z; Hara H Microbes Environ; 2019 Jun; 34(2):161-168. PubMed ID: 31019143 [TBL] [Abstract][Full Text] [Related]
4. Biomethane production and dynamics of microflora in response to copper treatments during mesophilic anaerobic digestion. Ke X; Wang C; Li R; Zhang Y; Zhang H; Gui S Waste Manag Res; 2014 Aug; 32(8):726-32. PubMed ID: 25092381 [TBL] [Abstract][Full Text] [Related]
5. Effect of operating temperatures on the microbial community profiles in a high cell density hybrid anaerobic bioreactor. Kundu K; Sharma S; Sreekrishnan TR Bioresour Technol; 2012 Aug; 118():502-11. PubMed ID: 22717570 [TBL] [Abstract][Full Text] [Related]
6. Succession of lignocellulolytic bacterial consortia bred anaerobically from lake sediment. Korenblum E; Jiménez DJ; van Elsas JD Microb Biotechnol; 2016 Mar; 9(2):224-34. PubMed ID: 26875750 [TBL] [Abstract][Full Text] [Related]
7. Enhancing the anaerobic digestion of lignocellulose of municipal solid waste using a microbial pretreatment method. Yuan X; Wen B; Ma X; Zhu W; Wang X; Chen S; Cui Z Bioresour Technol; 2014 Feb; 154():1-9. PubMed ID: 24365784 [TBL] [Abstract][Full Text] [Related]
8. Enrichment of lignocellulose-degrading microbial communities from natural and engineered methanogenic environments. Ozbayram EG; Kleinsteuber S; Nikolausz M; Ince B; Ince O Appl Microbiol Biotechnol; 2018 Jan; 102(2):1035-1043. PubMed ID: 29151162 [TBL] [Abstract][Full Text] [Related]
9. Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. Kröber M; Bekel T; Diaz NN; Goesmann A; Jaenicke S; Krause L; Miller D; Runte KJ; Viehöver P; Pühler A; Schlüter A J Biotechnol; 2009 Jun; 142(1):38-49. PubMed ID: 19480946 [TBL] [Abstract][Full Text] [Related]
10. Substrate induced emergence of different active bacterial and archaeal assemblages during biomethane production. Lu X; Rao S; Shen Z; Lee PK Bioresour Technol; 2013 Nov; 148():517-24. PubMed ID: 24080290 [TBL] [Abstract][Full Text] [Related]
11. Bioconversion of un-pretreated lignocellulosic materials by a microbial consortium XDC-2. Hui W; Jiajia L; Yucai L; Peng G; Xiaofen W; Kazuhiro M; Zongjun C Bioresour Technol; 2013 May; 136():481-7. PubMed ID: 23567720 [TBL] [Abstract][Full Text] [Related]
12. Depolymerization of lignocellulose of oil palm empty fruit bunch by thermophilic microorganisms from tropical climate. Azman NF; Megat Mohd Noor MJ; Md Akhir FN; Ang MY; Hashim H; Othman N; Zakaria Z; Hara H Bioresour Technol; 2019 May; 279():174-180. PubMed ID: 30721818 [TBL] [Abstract][Full Text] [Related]
13. Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production. Barakat A; Monlau F; Steyer JP; Carrere H Bioresour Technol; 2012 Jan; 104():90-9. PubMed ID: 22100239 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous treatment of raw palm oil mill effluent and biodegradation of palm fiber in a high-rate CSTR. Khemkhao M; Techkarnjanaruk S; Phalakornkule C Bioresour Technol; 2015 Feb; 177():17-27. PubMed ID: 25479389 [TBL] [Abstract][Full Text] [Related]
15. Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Lebuhn M; Hanreich A; Klocke M; Schlüter A; Bauer C; Pérez CM Anaerobe; 2014 Oct; 29():10-21. PubMed ID: 24785351 [TBL] [Abstract][Full Text] [Related]
16. The effect of storage conditions on microbial community composition and biomethane potential in a biogas starter culture. Hagen LH; Vivekanand V; Pope PB; Eijsink VG; Horn SJ Appl Microbiol Biotechnol; 2015 Jul; 99(13):5749-61. PubMed ID: 25947246 [TBL] [Abstract][Full Text] [Related]
17. Characterization of a microbial consortium capable of degrading lignocellulose. Wang W; Yan L; Cui Z; Gao Y; Wang Y; Jing R Bioresour Technol; 2011 Oct; 102(19):9321-4. PubMed ID: 21831630 [TBL] [Abstract][Full Text] [Related]
18. Production and purification of xylooligosaccharides from oil palm empty fruit bunch fibre by a non-isothermal process. Ho AL; Carvalheiro F; Duarte LC; Roseiro LB; Charalampopoulos D; Rastall RA Bioresour Technol; 2014; 152():526-9. PubMed ID: 24275261 [TBL] [Abstract][Full Text] [Related]
19. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Peng X; Wilken SE; Lankiewicz TS; Gilmore SP; Brown JL; Henske JK; Swift CL; Salamov A; Barry K; Grigoriev IV; Theodorou MK; Valentine DL; O'Malley MA Nat Microbiol; 2021 Apr; 6(4):499-511. PubMed ID: 33526884 [TBL] [Abstract][Full Text] [Related]
20. Microbial community characterization of an UASB treating increased organic loading rates of vitamin C biosynthesis wastewater. Shi R; Zhang Y; Yang W; Xu H Water Sci Technol; 2012; 65(2):254-61. PubMed ID: 22233903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]