BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 236397)

  • 1. Reaction of nitrite with ascorbate and its relation to nitrosamine formation.
    Archer MC; Tannenbaum SR; Fan TY; Weisman M
    J Natl Cancer Inst; 1975 May; 54(5):1203-5. PubMed ID: 236397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ascorbate-nitrite reaction: possible means of blocking the formation of carcinogenic N-nitroso compounds.
    Mirvish SS; Wallcave L; Eagen M; Shubik P
    Science; 1972 Jul; 177(4043):65-8. PubMed ID: 5041776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of ascorbic acid to inhibit nitrosation: kinetic and mass transfer considerations for an in vitro system.
    Licht WR; Tannenbaum SR; Deen WM
    Carcinogenesis; 1988 Mar; 9(3):365-72. PubMed ID: 3345578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-nitrosation and N-nitration of morpholine by nitrogen dioxide: inhibition by ascorbate, glutathione and alpha-tocopherol.
    Cooney RV; Ross PD; Bartolini GL
    Cancer Lett; 1986 Jul; 32(1):83-90. PubMed ID: 3742490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating effect of ascorbic acid on N-nitrosamine formation and nitrosation by oxyhyponitrite.
    Chang SK; Harrington GW; Rothstein M; Shergalis WA; Swern D; Vohra SK
    Cancer Res; 1979 Oct; 39(10):3871-4. PubMed ID: 38902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of bacterially mediated N-nitrosation by ascorbate: therapeutic and mechanistic considerations.
    Leach SA; Mackerness CW; Hill MJ; Thompson MH
    IARC Sci Publ; 1991; (105):571-8. PubMed ID: 1855920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential nitrosamine formation and its prevention during biological denitrification of red beet juice.
    Kolb E; Haug M; Janzowski C; Vetter A; Eisenbrand G
    Food Chem Toxicol; 1997 Feb; 35(2):219-24. PubMed ID: 9146735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and mechanism of the Co(II)-assisted oxidation of L-ascorbic acid by dioxygen and nitrite in aqueous solution.
    Vlasova EA; Hessenauer-Ilicheva N; Salnikov DS; Kudrik EV; Makarov SV; van Eldik R
    Dalton Trans; 2009 Dec; (47):10541-9. PubMed ID: 20023878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic information on the nitrite-controlled reduction of aquacob(III)alamin by ascorbate at physiological pH.
    Polaczek J; Orzeł Ł; Stochel G; van Eldik R
    J Biol Inorg Chem; 2015 Sep; 20(6):1069-78. PubMed ID: 26246372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination of ascorbate-dependent nonenzymatic and enzymatic, membrane-bound reduction of nitric oxide in denitrifying Pseudomonas perfectomarinus.
    Zumft WG; Frunzke K
    Biochim Biophys Acta; 1982 Sep; 681(3):459-68. PubMed ID: 7126558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of sodium ascorbate on tumor induction in rats treated with morpholine and sodium nitrite, and with nitrosomorpholine.
    Mirvish SS; Pelfrene AF; Garcia H; Shubik P
    Cancer Lett; 1976 Nov; 2(2):101-8. PubMed ID: 1016958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical reactivity of nitrite and ascorbate in a cured and cooked meat model implication in nitrosation, nitrosylation and oxidation.
    Bonifacie A; Promeyrat A; Nassy G; Gatellier P; Santé-Lhoutellier V; Théron L
    Food Chem; 2021 Jun; 348():129073. PubMed ID: 33524692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some effects of phenol- and thiol-nitrosation reactions on N-nitrosamine formation.
    Davies R; Dennis MJ; Massey RC; McWeeny DJ
    IARC Sci Publ (1971); 1978; (19):183-97. PubMed ID: 28276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrosation by stimulated macrophages. Inhibitors, enhancers and substrates.
    Kosaka H; Wishnok JS; Miwa M; Leaf CD; Tannenbaum SR
    Carcinogenesis; 1989 Mar; 10(3):563-6. PubMed ID: 2494000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quercetin-dependent reduction of salivary nitrite to nitric oxide under acidic conditions and interaction between quercetin and ascorbic acid during the reduction.
    Takahama U; Yamamoto A; Hirota S; Oniki T
    J Agric Food Chem; 2003 Sep; 51(20):6014-20. PubMed ID: 13129310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of oxidized cytochrome c by ascorbate ion.
    Williams NH; Yandell JK
    Biochim Biophys Acta; 1985 Nov; 810(2):274-7. PubMed ID: 2998459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bicyclic ring formation is not necessary for the (auto)oxidation of ascorbic acid.
    Fleming JE; Miyashita K; Quay SC; Bensch KG
    Biochem Biophys Res Commun; 1983 Sep; 115(2):531-5. PubMed ID: 6626202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the mechanism of the ascorbic acid-induced release of nitric oxide from N-nitrosated tryptophan derivatives: scavenging of NO by ascorbyl radicals.
    Kytzia A; Korth HG; Sustmann R; de Groot H; Kirsch M
    Chemistry; 2006 Nov; 12(34):8786-97. PubMed ID: 16952125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalysis and inhibition of N-nitrosation reactions.
    Archer MC
    IARC Sci Publ; 1984; (57):263-74. PubMed ID: 6398294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of nitrosamine formation by ascorbic acid.
    Tannenbaum SR; Wishnok JS; Leaf CD
    Am J Clin Nutr; 1991 Jan; 53(1 Suppl):247S-250S. PubMed ID: 1985394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.