These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 23639992)

  • 41. A new tool for routine testing of cellular protein expression: integration of cell staining and analysis of protein expression on a microfluidic chip-based system.
    Buhlmann C; Preckel T; Chan S; Luedke G; Valer M
    J Biomol Tech; 2003 Jun; 14(2):119-27. PubMed ID: 14676310
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 3D-glass molds for facile production of complex droplet microfluidic chips.
    Tovar M; Weber T; Hengoju S; Lovera A; Munser AS; Shvydkiv O; Roth M
    Biomicrofluidics; 2018 Mar; 12(2):024115. PubMed ID: 29657658
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-grade optical polydimethylsiloxane for microfluidic applications.
    Lovchik RD; Wolf H; Delamarche E
    Biomed Microdevices; 2011 Dec; 13(6):1027-32. PubMed ID: 21786042
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Small volume low mechanical stress cytometry using computer-controlled Braille display microfluidics.
    Tung YC; Torisawa YS; Futai N; Takayama S
    Lab Chip; 2007 Nov; 7(11):1497-503. PubMed ID: 17960277
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient macromolecular crystallization using microfluidics and randomized design of screening reagents.
    May AP; Segelke BW
    Methods Mol Biol; 2008; 426():387-402. PubMed ID: 18542878
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microfluidic electrochemical aptameric assay integrated on-chip: a potentially convenient sensing platform for the amplified and multiplex analysis of small molecules.
    Du Y; Chen C; Zhou M; Dong S; Wang E
    Anal Chem; 2011 Mar; 83(5):1523-9. PubMed ID: 21291178
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Solvent-resistant photocurable liquid fluoropolymers for microfluidic device fabrication [corrected].
    Rolland JP; Van Dam RM; Schorzman DA; Quake SR; DeSimone JM
    J Am Chem Soc; 2004 Mar; 126(8):2322-3. PubMed ID: 14982433
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids.
    Srinivasan V; Pamula VK; Fair RB
    Lab Chip; 2004 Aug; 4(4):310-5. PubMed ID: 15269796
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanostructured digital microfluidics for enhanced surface plasmon resonance imaging.
    Malic L; Veres T; Tabrizian M
    Biosens Bioelectron; 2011 Jan; 26(5):2053-9. PubMed ID: 20926281
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pressure driven digital logic in PDMS based microfluidic devices fabricated by multilayer soft lithography.
    Devaraju NS; Unger MA
    Lab Chip; 2012 Nov; 12(22):4809-15. PubMed ID: 23000861
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Screw-actuated displacement micropumps for thermoplastic microfluidics.
    Han JY; Rahmanian OD; Kendall EL; Fleming N; DeVoe DL
    Lab Chip; 2016 Oct; 16(20):3940-3946. PubMed ID: 27713994
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A simple method for preparation of macroporous polydimethylsiloxane membrane for microfluidic chip-based isoelectric focusing applications.
    Ou J; Ren CL; Pawliszyn J
    Anal Chim Acta; 2010 Mar; 662(2):200-5. PubMed ID: 20171320
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Open-Source Wax RepRap 3-D Printer for Rapid Prototyping Paper-Based Microfluidics.
    Pearce JM; Anzalone NC; Heldt CL
    J Lab Autom; 2016 Aug; 21(4):510-6. PubMed ID: 26763294
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CE chips fabricated by injection molding and polyethylene/thermoplastic elastomer film packaging methods.
    Huang FC; Chen YF; Lee GB
    Electrophoresis; 2007 Apr; 28(7):1130-7. PubMed ID: 17311242
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A disposable lab-on-a-chip platform with embedded fluid actuators for active nanoliter liquid handling.
    Samel B; Nock V; Russom A; Griss P; Stemme G
    Biomed Microdevices; 2007 Feb; 9(1):61-7. PubMed ID: 17106636
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Orientation-Based Control of Microfluidics.
    Norouzi N; Bhakta HC; Grover WH
    PLoS One; 2016; 11(3):e0149259. PubMed ID: 26950700
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design and integration of a generic disposable array-compatible sensor housing into an integrated disposable indirect microfluidic flow injection analysis system.
    Rapp BE; Schickling B; Prokop J; Piotter V; Rapp M; Länge K
    Biomed Microdevices; 2011 Oct; 13(5):909-22. PubMed ID: 21698382
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A simple PDMS-based microfluidic channel design that removes bubbles for long-term on-chip culture of mammalian cells.
    Zheng W; Wang Z; Zhang W; Jiang X
    Lab Chip; 2010 Nov; 10(21):2906-10. PubMed ID: 20844778
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis.
    Schumacher S; Nestler J; Otto T; Wegener M; Ehrentreich-Förster E; Michel D; Wunderlich K; Palzer S; Sohn K; Weber A; Burgard M; Grzesiak A; Teichert A; Brandenburg A; Koger B; Albers J; Nebling E; Bier FF
    Lab Chip; 2012 Feb; 12(3):464-73. PubMed ID: 22038328
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Integrated multifunctional microfluidics for automated proteome analyses.
    Osiri JK; Shadpour H; Witek MA; Soper SA
    Top Curr Chem; 2011; 304():261-94. PubMed ID: 21678138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.