BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 23640165)

  • 1. Hirsutellones and beyond: figuring out the biological and synthetic logics toward chemical complexity in fungal PKS-NRPS compounds.
    Li XW; Ear A; Nay B
    Nat Prod Rep; 2013 Jun; 30(6):765-82. PubMed ID: 23640165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hirsutellone F, a dimer of antitubercular alkaloids from the seed fungus Trichoderma species BCC 7579.
    Isaka M; Prathumpai W; Wongsa P; Tanticharoen M
    Org Lett; 2006 Jun; 8(13):2815-7. PubMed ID: 16774264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular diversity sculpted by fungal PKS-NRPS hybrids.
    Boettger D; Hertweck C
    Chembiochem; 2013 Jan; 14(1):28-42. PubMed ID: 23225733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-protein interactions in polyketide synthase-nonribosomal peptide synthetase hybrid assembly lines.
    Miyanaga A; Kudo F; Eguchi T
    Nat Prod Rep; 2018 Nov; 35(11):1185-1209. PubMed ID: 30074030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chapter 9. Synthetic probes for polyketide and nonribosomal peptide biosynthetic enzymes.
    Meier JL; Burkart MD
    Methods Enzymol; 2009; 458():219-54. PubMed ID: 19374985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatorialization of fungal polyketide synthase-peptide synthetase hybrid proteins.
    Kakule TB; Lin Z; Schmidt EW
    J Am Chem Soc; 2014 Dec; 136(51):17882-90. PubMed ID: 25436464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery and Characterization of a PKS-NRPS Hybrid in
    Tang S; Zhang W; Li Z; Li H; Geng C; Huang X; Lu X
    J Nat Prod; 2020 Feb; 83(2):473-480. PubMed ID: 32077283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary imprint of catalytic domains in fungal PKS-NRPS hybrids.
    Boettger D; Bergmann H; Kuehn B; Shelest E; Hertweck C
    Chembiochem; 2012 Nov; 13(16):2363-73. PubMed ID: 23023987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the chemical space of fungal polyketides by phylogeny-based bioinformatics analysis of polyketide synthase-nonribosomal peptide synthetase and its modification enzymes.
    Minami A; Ugai T; Ozaki T; Oikawa H
    Sci Rep; 2020 Aug; 10(1):13556. PubMed ID: 32782278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances on structure, bioactivity, and biosynthesis of amino acid-containing trans-AT polyketides.
    Wu Y; Wang M; Liu L
    Eur J Med Chem; 2023 Dec; 262():115890. PubMed ID: 37907023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico analysis of methyltransferase domains involved in biosynthesis of secondary metabolites.
    Ansari MZ; Sharma J; Gokhale RS; Mohanty D
    BMC Bioinformatics; 2008 Oct; 9():454. PubMed ID: 18950525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Docking domain-mediated subunit interactions in natural product megasynth(et)ases.
    Smith HG; Beech MJ; Lewandowski JR; Challis GL; Jenner M
    J Ind Microbiol Biotechnol; 2021 Jun; 48(3-4):. PubMed ID: 33640957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylation-dependent acyl transfer between polyketide synthase and nonribosomal peptide synthetase modules in fungal natural product biosynthesis.
    Zou Y; Xu W; Tsunematsu Y; Tang M; Watanabe K; Tang Y
    Org Lett; 2014 Dec; 16(24):6390-3. PubMed ID: 25494235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the chemical logic and enzymatic machinery of NRPS assembly lines.
    Walsh CT
    Nat Prod Rep; 2016 Feb; 33(2):127-35. PubMed ID: 26175103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domain-Targeted Metabolomics Delineates the Heterocycle Assembly Steps of Colibactin Biosynthesis.
    Trautman EP; Healy AR; Shine EE; Herzon SB; Crawford JM
    J Am Chem Soc; 2017 Mar; 139(11):4195-4201. PubMed ID: 28240912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimycin-type depsipeptides: discovery, biosynthesis, chemical synthesis, and bioactivities.
    Liu J; Zhu X; Kim SJ; Zhang W
    Nat Prod Rep; 2016 Oct; 33(10):1146-65. PubMed ID: 27307039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of a biosynthetic intermediate to explore the chemical diversity of pseudo-natural fungal polyketides.
    Asai T; Tsukada K; Ise S; Shirata N; Hashimoto M; Fujii I; Gomi K; Nakagawara K; Kodama EN; Oshima Y
    Nat Chem; 2015 Sep; 7(9):737-43. PubMed ID: 26291946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aryl-aldehyde formation in fungal polyketides: discovery and characterization of a distinct biosynthetic mechanism.
    Wang M; Beissner M; Zhao H
    Chem Biol; 2014 Feb; 21(2):257-63. PubMed ID: 24412543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-inspired formal synthesis of hirsutellones A-C featuring an electrophilic cyclization triggered by remote Lewis acid-activation.
    Li XW; Ear A; Roger L; Riache N; Deville A; Nay B
    Chemistry; 2013 Nov; 19(48):16389-93. PubMed ID: 24136873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural diversity and chemical synthesis of peroxide and peroxide-derived polyketide metabolites from marine sponges.
    Norris MD; Perkins MV
    Nat Prod Rep; 2016 Jul; 33(7):861-80. PubMed ID: 27163115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.