These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 23640401)

  • 1. How to interpret current-voltage relationships of blocking grain boundaries in oxygen ionic conductors.
    Kim SK; Khodorov S; Chen CT; Kim S; Lubomirsky I
    Phys Chem Chem Phys; 2013 Jun; 15(22):8716-21. PubMed ID: 23640401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A linear diffusion model for ion current across blocking grain boundaries in oxygen-ion and proton conductors.
    Kim SK; Khodorov S; Lubomirsky I; Kim S
    Phys Chem Chem Phys; 2014 Jul; 16(28):14961-8. PubMed ID: 24930884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On determining the height of the potential barrier at grain boundaries in ion-conducting oxides.
    Kim S; Kim SK; Khodorov S; Maier J; Lubomirsky I
    Phys Chem Chem Phys; 2016 Jan; 18(4):3023-31. PubMed ID: 26738808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applicability of a linear diffusion model to determination of the height of the potential barrier at the grain boundaries of Fe-doped SrTiO
    Chang CS; Lubomirsky I; Kim S
    Phys Chem Chem Phys; 2018 Jul; 20(28):19250-19256. PubMed ID: 29989140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear electrical grain boundary properties in proton conducting Y-BaZrO3 supporting the space charge depletion model.
    Shirpour M; Merkle R; Lin CT; Maier J
    Phys Chem Chem Phys; 2012 Jan; 14(2):730-40. PubMed ID: 22108574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ReaxFF reactive force field for the Y-doped BaZrO3 proton conductor with applications to diffusion rates for multigranular systems.
    van Duin AC; Merinov BV; Han SS; Dorso CO; Goddard WA
    J Phys Chem A; 2008 Nov; 112(45):11414-22. PubMed ID: 18925731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast oxygen exchange and diffusion kinetics of grain boundaries in Sr-doped LaMnO3 thin films.
    Navickas E; Huber TM; Chen Y; Hetaba W; Holzlechner G; Rupp G; Stöger-Pollach M; Friedbacher G; Hutter H; Yildiz B; Fleig J
    Phys Chem Chem Phys; 2015 Mar; 17(12):7659-69. PubMed ID: 25594681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current-voltage characteristics of grain boundaries in polycrystalline Sr-doped LaGaO3.
    Chen CT; Choi K; Kim S
    Phys Chem Chem Phys; 2012 Jul; 14(25):9047-9. PubMed ID: 22641050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing grain boundary ionic conductivity in mixed ionic-electronic conductors.
    Lin Y; Fang S; Su D; Brinkman KS; Chen F
    Nat Commun; 2015 Apr; 6():6824. PubMed ID: 25857355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local electrical conduction in polycrystalline La-doped BiFeO₃ thin films.
    Zhou MX; Chen B; Sun HB; Wan JG; Li ZW; Liu JM; Song FQ; Wang GH
    Nanotechnology; 2013 Jun; 24(22):225702. PubMed ID: 23637078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductive Nature of Grain Boundaries in Nanocrystalline Stabilized Bi
    Jeong SJ; Kwak NW; Byeon P; Chung SY; Jung W
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6269-6275. PubMed ID: 29369610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. STEM and APT characterization of scale formation on a La,Hf,Ti-doped NiCrAl model alloy.
    Unocic KA; Chen Y; Shin D; Pint BA; Marquis EA
    Micron; 2018 Jun; 109():41-52. PubMed ID: 29635074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Correlations of Grain Boundary Potentials to Chemical States and Dielectric Properties of Doped CaCu
    Cho A; Han CS; Kang M; Choi W; Lee J; Jeon J; Yu S; Jung YS; Cho YS
    ACS Appl Mater Interfaces; 2018 May; 10(18):16203-16209. PubMed ID: 29658263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and segregation of dopant-defect complexes at grain boundaries in nanocrystalline doped ceria.
    Dholabhai PP; Aguiar JA; Wu L; Holesinger TG; Aoki T; Castro RH; Uberuaga BP
    Phys Chem Chem Phys; 2015 Jun; 17(23):15375-85. PubMed ID: 26000664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significant reduction in hydration energy for yttria stabilized zirconia grain boundaries and the consequences for proton conduction.
    Dawson JA; Tanaka I
    Langmuir; 2014 Sep; 30(34):10456-64. PubMed ID: 25105345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The formation of equilibrium space-charge zones at grain boundaries in the perovskite oxide SrTiO3.
    De Souza RA
    Phys Chem Chem Phys; 2009 Nov; 11(43):9939-69. PubMed ID: 19865746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The intrinsic origin of the grain-boundary resistance in Sr-doped LaGaO
    Kim S
    Monatsh Chem; 2009; 140(9):1053-1057. PubMed ID: 26166849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photo-enhanced ionic conductivity across grain boundaries in polycrystalline ceramics.
    Defferriere T; Klotz D; Gonzalez-Rosillo JC; Rupp JLM; Tuller HL
    Nat Mater; 2022 Apr; 21(4):438-444. PubMed ID: 35027718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defects in rutile and anatase polymorphs of TiO2: kinetics and thermodynamics near grain boundaries.
    Uberuaga BP; Bai XM
    J Phys Condens Matter; 2011 Nov; 23(43):435004. PubMed ID: 21960062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural modification of nanocrystalline ceria by ion beams.
    Zhang Y; Edmondson PD; Varga T; Moll S; Namavar F; Lan C; Weber WJ
    Phys Chem Chem Phys; 2011 Jul; 13(25):11946-50. PubMed ID: 21611659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.