These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
485 related articles for article (PubMed ID: 23640751)
1. Climate warming affects biological invasions by shifting interactions of plants and herbivores. Lu X; Siemann E; Shao X; Wei H; Ding J Glob Chang Biol; 2013 Aug; 19(8):2339-47. PubMed ID: 23640751 [TBL] [Abstract][Full Text] [Related]
2. Warming benefits a native species competing with an invasive congener in the presence of a biocontrol beetle. Lu X; Siemann E; He M; Wei H; Shao X; Ding J New Phytol; 2016 Sep; 211(4):1371-81. PubMed ID: 27094757 [TBL] [Abstract][Full Text] [Related]
3. Climate warming increases biological control agent impact on a non-target species. Lu X; Siemann E; He M; Wei H; Shao X; Ding J Ecol Lett; 2015 Jan; 18(1):48-56. PubMed ID: 25376303 [TBL] [Abstract][Full Text] [Related]
4. Global warming increases the interspecific competitiveness of the invasive plant alligator weed, Alternanthera philoxeroides. Wu H; Ismail M; Ding J Sci Total Environ; 2017 Jan; 575():1415-1422. PubMed ID: 27720597 [TBL] [Abstract][Full Text] [Related]
5. Herbivory may promote a non-native plant invasion at low but not high latitudes. Lu X; He M; Tang S; Wu Y; Shao X; Wei H; Siemann E; Ding J Ann Bot; 2019 Nov; 124(5):819-827. PubMed ID: 31318017 [TBL] [Abstract][Full Text] [Related]
6. Physical connection decreases benefits of clonal integration in Alternanthera philoxeroides under three warming scenarios. Li JJ; Peng PH; He WM Plant Biol (Stuttg); 2012 Mar; 14(2):265-70. PubMed ID: 21973262 [TBL] [Abstract][Full Text] [Related]
7. Invasive plant Alternanthera philoxeroides suffers more severe herbivory pressure than native competitors in recipient communities. Fan S; Yu H; Dong X; Wang L; Chen X; Yu D; Liu C Sci Rep; 2016 Nov; 6():36542. PubMed ID: 27827418 [TBL] [Abstract][Full Text] [Related]
8. Aboveground herbivory can promote exotic plant invasion through intra- and interspecific aboveground-belowground interactions. Gao L; Wei C; He Y; Tang X; Chen W; Xu H; Wu Y; Wilschut RA; Lu X New Phytol; 2023 Mar; 237(6):2347-2359. PubMed ID: 36200166 [TBL] [Abstract][Full Text] [Related]
9. Experimental demography and the vital rates of generalist and specialist insect herbivores on native and novel host plants. García-Robledo C; Horvitz CC J Anim Ecol; 2011 Sep; 80(5):976-89. PubMed ID: 21534952 [TBL] [Abstract][Full Text] [Related]
10. Latitudinal variation in soil biota: testing the biotic interaction hypothesis with an invasive plant and a native congener. Lu X; He M; Ding J; Siemann E ISME J; 2018 Dec; 12(12):2811-2822. PubMed ID: 30013163 [TBL] [Abstract][Full Text] [Related]
11. Increased seedling establishment via enemy release at the upper elevational range limit of sugar maple. Urli M; Brown CD; Narváez Perez R; Chagnon PL; Vellend M Ecology; 2016 Nov; 97(11):3058-3069. PubMed ID: 27870043 [TBL] [Abstract][Full Text] [Related]
12. Range-expanding pests and pathogens in a warming world. Bebber DP Annu Rev Phytopathol; 2015; 53():335-56. PubMed ID: 26047565 [TBL] [Abstract][Full Text] [Related]
13. Climate Change and Tritrophic Interactions: Will Modifications to Greenhouse Gas Emissions Increase the Vulnerability of Herbivorous Insects to Natural Enemies? Boullis A; Francis F; Verheggen FJ Environ Entomol; 2015 Apr; 44(2):277-86. PubMed ID: 26313181 [TBL] [Abstract][Full Text] [Related]
14. Response of native insect communities to invasive plants. Bezemer TM; Harvey JA; Cronin JT Annu Rev Entomol; 2014; 59():119-41. PubMed ID: 24160425 [TBL] [Abstract][Full Text] [Related]
15. Disturbance is the key to plant invasions in cold environments. Lembrechts JJ; Pauchard A; Lenoir J; Nuñez MA; Geron C; Ven A; Bravo-Monasterio P; Teneb E; Nijs I; Milbau A Proc Natl Acad Sci U S A; 2016 Dec; 113(49):14061-14066. PubMed ID: 27872292 [TBL] [Abstract][Full Text] [Related]
16. Seasonal adaptations to day length in ecotypes of Diorhabda spp. (Coleoptera: Chrysomelidae) inform selection of agents against saltcedars (Tamarix spp.). Dalin P; Bean DW; Dudley TL; Carney VA; Eberts D; Gardner KT; Hebertson E; Jones EN; Kazmer DJ; Michels GJ; O'Meara SA; Thompson DC Environ Entomol; 2010 Oct; 39(5):1666-75. PubMed ID: 22546466 [TBL] [Abstract][Full Text] [Related]
17. Alien interference: disruption of infochemical networks by invasive insect herbivores. Desurmont GA; Harvey J; van Dam NM; Cristescu SM; Schiestl FP; Cozzolino S; Anderson P; Larsson MC; Kindlmann P; Danner H; Turlings TC Plant Cell Environ; 2014 Aug; 37(8):1854-65. PubMed ID: 24689553 [TBL] [Abstract][Full Text] [Related]
18. Specialist Insect Herbivore and Light Availability Do Not Interact in the Evolution of an Invasive Plant. Zhang Z; Pan X; Zhang Z; He KS; Li B PLoS One; 2015; 10(9):e0139234. PubMed ID: 26407176 [TBL] [Abstract][Full Text] [Related]
19. Plant invasion alters latitudinal pattern of plant-defense syndromes. Liu M; Pan Y; Pan X; Sosa A; Blumenthal DM; Van Kleunen M; Li B Ecology; 2021 Dec; 102(12):e03511. PubMed ID: 34355383 [TBL] [Abstract][Full Text] [Related]
20. Are invaders moving targets? The generality and persistence of advantages in size, reproduction, and enemy release in invasive plant species with time since introduction. Hawkes CV Am Nat; 2007 Dec; 170(6):832-43. PubMed ID: 18171166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]