BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

698 related articles for article (PubMed ID: 23640753)

  • 1. Fluorescence quenching investigation on the interaction of glutathione-CdTe/CdS quantum dots with sanguinarine and its analytical application.
    Shen Y; Liu S; He Y
    Luminescence; 2014 Mar; 29(2):176-82. PubMed ID: 23640753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutathione-capped CdTe nanocrystals as probe for the determination of fenbendazole.
    Li Q; Tan X; Li J; Pan L; Liu X
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 141():10-5. PubMed ID: 25659737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular spectroscopic studies on the interactions of rhein and emodin with thioglycolic acid-capped core/shell CdTe/CdS quantum dots and their analytical applications.
    Li D; Liu S; Shen Y; Yang J; He Y
    Luminescence; 2015 Feb; 30(1):60-6. PubMed ID: 24850622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of DNA using an "off-on" switch of a regenerating biosensor based on an electron transfer mechanism from glutathione-capped CdTe quantum dots to nile blue.
    Shen Y; Liu S; Kong L; Tan X; He Y; Yang J
    Analyst; 2014 Nov; 139(22):5858-67. PubMed ID: 25221793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive detection of sodium cromoglycate with glutathione-capped CdTe quantum dots as a novel fluorescence probe.
    Hao C; Liu S; Li D; Yang J; He Y
    Luminescence; 2015 Nov; 30(7):1112-8. PubMed ID: 25683844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive determination of enoxacin in pharmaceutical formulations by its quench effect on the fluorescence of glutathione-capped CdTe quantum dots.
    Yang Q; Tan X; Yang J
    Luminescence; 2016 Feb; 31(1):241-6. PubMed ID: 26105709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence enhancement of glutathione capped CdTe/ZnS quantum dots by embedding into cationic starch for sensitive detection of rifampicin.
    Hooshyar Z; Bardajee GR
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():144-150. PubMed ID: 27639201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods.
    Bardajee GR; Hooshyar Z
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():806-15. PubMed ID: 26952487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studying the interaction between CdTe quantum dots and Nile blue by absorption, fluorescence and resonance Rayleigh scattering spectra.
    Peng JJ; Liu SP; Wang L; He YQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 May; 75(5):1571-6. PubMed ID: 20227334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of CdTe quantum dots size on the conformational changes of human serum albumin: results of spectroscopy and isothermal titration calorimetry.
    Yang B; Liu R; Hao X; Wu Y; Du J
    Biol Trace Elem Res; 2013 Oct; 155(1):150-8. PubMed ID: 23904329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoluminescence Quenching of CdTe Quantum Dots Generated via Glutathione-Capped Au Nanocrystals.
    Zhu Y; Yang P; Miao Y; Cao Y; Yang Y
    J Nanosci Nanotechnol; 2015 Jun; 15(6):4276-84. PubMed ID: 26369039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of glutathione with an "off-on" fluorescent biosensor based on N-acetyl-L-cysteine capped CdTe quantum dots.
    Tan X; Yang J; Li Q; Yang Q
    Analyst; 2015 Oct; 140(19):6748-57. PubMed ID: 26332659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cathodic stripping synthesis and cytotoxity studies of glutathione-capped CdTe quantum dots.
    Ge C; Zhao Y; Hui J; Zhang T; Miao W; Yu W
    J Nanosci Nanotechnol; 2011 Aug; 11(8):6710-7. PubMed ID: 22103072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A selective determination of copper ions in water samples based on the fluorescence quenching of thiol-capped CdTe quantum dots.
    Nurerk P; Kanatharana P; Bunkoed O
    Luminescence; 2016 Mar; 31(2):515-522. PubMed ID: 26250550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of DNA utilizing a fluorescent reversible change of a biosensor based on the electron transfer from quantum dots to polymyxin B sulfate.
    Wang L; Liu S; Liang W; Li D; Yang J; He Y
    J Colloid Interface Sci; 2015 Jun; 448():257-64. PubMed ID: 25744859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultraviolet radiation synthesis of water dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with high fluorescence strength and biocompatibility.
    Xu B; Cai B; Liu M; Fan H
    Nanotechnology; 2013 May; 24(20):205601. PubMed ID: 23598608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sensitive quantum dots-based "OFF-ON" fluorescent sensor for ruthenium anticancer drugs and ctDNA.
    Huang S; Zhu F; Qiu H; Xiao Q; Zhou Q; Su W; Hu B
    Colloids Surf B Biointerfaces; 2014 May; 117():240-7. PubMed ID: 24657609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Switch-on fluorescent strategy based on crystal violet-functionalized CdTe quantum dots for detecting L-cysteine and glutathione in water and urine.
    Sheng Z; Chen L
    Anal Bioanal Chem; 2017 Oct; 409(26):6081-6090. PubMed ID: 28799001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrothermal synthesis of GSH-TGA co-capped CdTe quantum dots and their application in labeling colorectal cancer cells.
    Yu Y; Xu L; Chen J; Gao H; Wang S; Fang J; Xu S
    Colloids Surf B Biointerfaces; 2012 Jun; 95():247-53. PubMed ID: 22494668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum dots (QDs) based fluorescence probe for the sensitive determination of kaempferol.
    Tan X; Liu S; Shen Y; He Y; Yang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():66-72. PubMed ID: 24929317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.