These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 23640769)

  • 1. Polymer brushes: promises and challenges.
    Yameen B; Farrukh A
    Chem Asian J; 2013 Aug; 8(8):1736-53. PubMed ID: 23640769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tapping the potential of polymer brushes through synthesis.
    Li B; Yu B; Ye Q; Zhou F
    Acc Chem Res; 2015 Feb; 48(2):229-37. PubMed ID: 25521476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responsive Polymer Brush Design and Emerging Applications for Nanotheranostics.
    Li D; Xu L; Wang J; Gautrot JE
    Adv Healthc Mater; 2021 Mar; 10(5):e2000953. PubMed ID: 32893474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salt-responsive polyzwitterionic materials for surface regeneration between switchable fouling and antifouling properties.
    Chen H; Yang J; Xiao S; Hu R; Bhaway SM; Vogt BD; Zhang M; Chen Q; Ma J; Chang Y; Li L; Zheng J
    Acta Biomater; 2016 Aug; 40():62-69. PubMed ID: 26965396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties.
    Yang J; Chen H; Xiao S; Shen M; Chen F; Fan P; Zhong M; Zheng J
    Langmuir; 2015 Aug; 31(33):9125-33. PubMed ID: 26245712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer brushes: routes toward mechanosensitive surfaces.
    Bünsow J; Kelby TS; Huck WT
    Acc Chem Res; 2010 Mar; 43(3):466-74. PubMed ID: 20038136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes.
    Kobayashi M; Terayama Y; Yamaguchi H; Terada M; Murakami D; Ishihara K; Takahara A
    Langmuir; 2012 May; 28(18):7212-22. PubMed ID: 22500465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimuli-responsive polymers and their applications in nanomedicine.
    Cabane E; Zhang X; Langowska K; Palivan CG; Meier W
    Biointerphases; 2012 Dec; 7(1-4):9. PubMed ID: 22589052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization.
    Pan G; Zhang Y; Guo X; Li C; Zhang H
    Biosens Bioelectron; 2010 Nov; 26(3):976-82. PubMed ID: 20837394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimuli-responsive polymer films.
    Zhai L
    Chem Soc Rev; 2013 Sep; 42(17):7148-60. PubMed ID: 23749141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer Brushes: Efficient Synthesis and Applications.
    Feng C; Huang X
    Acc Chem Res; 2018 Sep; 51(9):2314-2323. PubMed ID: 30137964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aqueous fabrication of pH-gated, polymer-brush-modified alumina hybrid membranes.
    Sugnaux C; Lavanant L; Klok HA
    Langmuir; 2013 Jun; 29(24):7325-33. PubMed ID: 23391159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing polymer brushes with electrochemical impedance spectroscopy: a mini review.
    Anthi J; Kolivoška V; Holubová B; Vaisocherová-Lísalová H
    Biomater Sci; 2021 Nov; 9(22):7379-7391. PubMed ID: 34693954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Preconditioning Influences the Antifouling Capabilities of Zwitterionic and Nonionic Polymer Brushes.
    Víšová I; Vrabcová M; Forinová M; Zhigunová Y; Mironov V; Houska M; Bittrich E; Eichhorn KJ; Hashim H; Schovánek P; Dejneka A; Vaisocherová-Lísalová H
    Langmuir; 2020 Jul; 36(29):8485-8493. PubMed ID: 32506911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, preparation, and characterization of lubricating polymer brushes for biomedical applications.
    Song X; Man J; Qiu Y; Wang J; Liu J; Li R; Zhang Y; Li J; Li J; Chen Y
    Acta Biomater; 2024 Feb; 175():76-105. PubMed ID: 38128641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the structural dependence of carbon space lengths of poly(N-hydroxyalkyl acrylamide)-based brushes on antifouling performance.
    Yang J; Zhang M; Chen H; Chang Y; Chen Z; Zheng J
    Biomacromolecules; 2014 Aug; 15(8):2982-91. PubMed ID: 24964712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Road to Circular Polymer Brushes: Challenges and Prospects.
    Brió Pérez M; Wurm FR; de Beer S
    Langmuir; 2024 Apr; 40(14):7249-7256. PubMed ID: 38556745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oligo(ethylene glycol) containing polymer brushes as bioselective surfaces.
    Andruzzi L; Senaratne W; Hexemer A; Sheets ED; Ilic B; Kramer EJ; Baird B; Ober CK
    Langmuir; 2005 Mar; 21(6):2495-504. PubMed ID: 15752045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical gating with nanostructured responsive polymer brushes: mixed brush versus homopolymer brush.
    Motornov M; Sheparovych R; Katz E; Minko S
    ACS Nano; 2008 Jan; 2(1):41-52. PubMed ID: 19206546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creation of functional membranes using polyelectrolyte multilayers and polymer brushes.
    Bruening ML; Dotzauer DM; Jain P; Ouyang L; Baker GL
    Langmuir; 2008 Aug; 24(15):7663-73. PubMed ID: 18507420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.