BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23640833)

  • 1. Delivery of S1P receptor-targeted drugs via biodegradable polymer scaffolds enhances bone regeneration in a critical size cranial defect.
    Das A; Tanner S; Barker DA; Green D; Botchwey EA
    J Biomed Mater Res A; 2014 Apr; 102(4):1210-8. PubMed ID: 23640833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local delivery of FTY720 accelerates cranial allograft incorporation and bone formation.
    Huang C; Das A; Barker D; Tholpady S; Wang T; Cui Q; Ogle R; Botchwey E
    Cell Tissue Res; 2012 Mar; 347(3):553-66. PubMed ID: 21863314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delivery of bioactive lipids from composite microgel-microsphere injectable scaffolds enhances stem cell recruitment and skeletal repair.
    Das A; Barker DA; Wang T; Lau CM; Lin Y; Botchwey EA
    PLoS One; 2014; 9(7):e101276. PubMed ID: 25077607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FTY720 promotes local microvascular network formation and regeneration of cranial bone defects.
    Petrie Aronin CE; Sefcik LS; Tholpady SS; Tholpady A; Sadik KW; Macdonald TL; Peirce SM; Wamhoff BR; Lynch KR; Ogle RC; Botchwey EA
    Tissue Eng Part A; 2010 Jun; 16(6):1801-9. PubMed ID: 20038198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FTY720-loaded poly(DL-lactide-co-glycolide) electrospun scaffold significantly increases microvessel density over 7 days in streptozotocin-induced diabetic C57b16/J mice: preliminary results.
    Bowers DT; Chhabra P; Langman L; Botchwey EA; Brayman KL
    Transplant Proc; 2011 Nov; 43(9):3285-7. PubMed ID: 22099778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis.
    Awojoodu AO; Ogle ME; Sefcik LS; Bowers DT; Martin K; Brayman KL; Lynch KR; Peirce-Cottler SM; Botchwey E
    Proc Natl Acad Sci U S A; 2013 Aug; 110(34):13785-90. PubMed ID: 23918395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering in vivo gradients of sphingosine-1-phosphate receptor ligands for localized microvascular remodeling and inflammatory cell positioning.
    Ogle ME; Sefcik LS; Awojoodu AO; Chiappa NF; Lynch K; Peirce-Cottler S; Botchwey EA
    Acta Biomater; 2014 Nov; 10(11):4704-4714. PubMed ID: 25128750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using poly(lactic-co-glycolic acid) microspheres to encapsulate plasmid of bone morphogenetic protein 2/polyethylenimine nanoparticles to promote bone formation in vitro and in vivo.
    Qiao C; Zhang K; Jin H; Miao L; Shi C; Liu X; Yuan A; Liu J; Li D; Zheng C; Zhang G; Li X; Yang B; Sun H
    Int J Nanomedicine; 2013; 8():2985-95. PubMed ID: 23990717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VEGF-incorporated biomimetic poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.
    Jabbarzadeh E; Deng M; Lv Q; Jiang T; Khan YM; Nair LS; Laurencin CT
    J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2187-96. PubMed ID: 22915492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect.
    Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG
    Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres.
    Son JS; Appleford M; Ong JL; Wenke JC; Kim JM; Choi SH; Oh DS
    J Control Release; 2011 Jul; 153(2):133-40. PubMed ID: 21420453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone.
    Zaky SH; Lee KW; Gao J; Jensen A; Verdelis K; Wang Y; Almarza AJ; Sfeir C
    Acta Biomater; 2017 May; 54():95-106. PubMed ID: 28110067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustained delivery of rhBMP-2 by means of poly(lactic-co-glycolic acid) microspheres: cranial bone regeneration without heterotopic ossification or craniosynostosis.
    Wink JD; Gerety PA; Sherif RD; Lim Y; Clarke NA; Rajapakse CS; Nah HD; Taylor JA
    Plast Reconstr Surg; 2014 Jul; 134(1):51-59. PubMed ID: 24622573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Injectable PLGA microspheres with tunable magnesium ion release for promoting bone regeneration.
    Yuan Z; Wei P; Huang Y; Zhang W; Chen F; Zhang X; Mao J; Chen D; Cai Q; Yang X
    Acta Biomater; 2019 Feb; 85():294-309. PubMed ID: 30553873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-ceramic composite scaffolds for bioreactor-based bone engineering.
    Lv Q; Deng M; Ulery BD; Nair LS; Laurencin CT
    Clin Orthop Relat Res; 2013 Aug; 471(8):2422-33. PubMed ID: 23436161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering.
    Wang X; Wenk E; Zhang X; Meinel L; Vunjak-Novakovic G; Kaplan DL
    J Control Release; 2009 Mar; 134(2):81-90. PubMed ID: 19071168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable polymerized simvastatin stimulates bone formation.
    Venkatesan N; Liyanage ADT; Castro-Núñez J; Asafo-Adjei T; Cunningham LL; Dziubla TD; Puleo DA
    Acta Biomater; 2019 Jul; 93():192-199. PubMed ID: 31055123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.
    Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT
    J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The promotion of mandibular defect healing by the targeting of S1P receptors and the recruitment of alternatively activated macrophages.
    Das A; Segar CE; Hughley BB; Bowers DT; Botchwey EA
    Biomaterials; 2013 Dec; 34(38):9853-62. PubMed ID: 24064148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects.
    Oest ME; Dupont KM; Kong HJ; Mooney DJ; Guldberg RE
    J Orthop Res; 2007 Jul; 25(7):941-50. PubMed ID: 17415756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.