These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 23640850)
1. Metapodial or phalanx? An evolutionary and developmental perspective on the homology of the first ray's proximal segment. Reno PL; Horton WE; Lovejoy CO J Exp Zool B Mol Dev Evol; 2013 Jul; 320(5):276-85. PubMed ID: 23640850 [TBL] [Abstract][Full Text] [Related]
2. Growth plate formation and development in alligator and mouse metapodials: evolutionary and functional implications. Reno PL; Horton WE; Elsey RM; Lovejoy CO J Exp Zool B Mol Dev Evol; 2007 May; 308(3):283-96. PubMed ID: 17285637 [TBL] [Abstract][Full Text] [Related]
3. Micro-finite element (μFE) modeling of the siamang (Symphalangus syndactylus) third proximal phalanx: the functional role of curvature and the flexor sheath ridge. Huynh Nguyen N; Pahr DH; Gross T; Skinner MM; Kivell TL J Hum Evol; 2014 Feb; 67():60-75. PubMed ID: 24496040 [TBL] [Abstract][Full Text] [Related]
4. Metacarpophalangeal joint orientation in anthropoid manual phalanges. Rein TR; McCarty LA Anat Rec (Hoboken); 2012 Dec; 295(12):2057-68. PubMed ID: 23161738 [TBL] [Abstract][Full Text] [Related]
5. The effect of the epiphyseal growth plate on the length of the first metacarpal in triphalangeal thumb. Zuidam JM; Dees EE; Lequin MH; Hovius SE J Hand Surg Am; 2006 Sep; 31(7):1183-8. PubMed ID: 16945724 [TBL] [Abstract][Full Text] [Related]
6. Skeletal segments of the human pollical and hallucal rays: comparison and analysis of their intrinsic proportions. Le Minor JM; Rozak M Ann Anat; 2005 Apr; 187(2):141-8. PubMed ID: 15900699 [TBL] [Abstract][Full Text] [Related]
7. Ontogenetic changes in the epiphyseal cartilage of Rana (Pelophylax) caralitana (Anura: Ranidae). Erismis UC; Chinsamy A Anat Rec (Hoboken); 2010 Nov; 293(11):1825-37. PubMed ID: 20814911 [TBL] [Abstract][Full Text] [Related]
8. Ossification of the mouse metatarsal: differentiation and proliferation in the presence/absence of a defined growth plate. Reno PL; McBurney DL; Lovejoy CO; Horton WE Anat Rec A Discov Mol Cell Evol Biol; 2006 Jan; 288(1):104-18. PubMed ID: 16342215 [TBL] [Abstract][Full Text] [Related]
9. Mammalian evolution. Evolutionary development in basal mammaliaforms as revealed by a docodontan. Luo ZX; Meng QJ; Ji Q; Liu D; Zhang YG; Neander AI Science; 2015 Feb; 347(6223):760-4. PubMed ID: 25678660 [TBL] [Abstract][Full Text] [Related]
10. Knuckle walking signal in the manual digits of Pan and Gorilla. Matarazzo S Am J Phys Anthropol; 2008 Jan; 135(1):27-33. PubMed ID: 17787000 [TBL] [Abstract][Full Text] [Related]
11. Metric dimensions of the proximal phalanges of the human hand and their relationship to side, position, and asymmetry. Garrido Varas CE; Thompson TJ Homo; 2011 Apr; 62(2):126-43. PubMed ID: 21168843 [TBL] [Abstract][Full Text] [Related]
12. Pierolapithecus and the functional morphology of Miocene ape hand phalanges: paleobiological and evolutionary implications. Almécija S; Alba DM; Moyà-Solà S J Hum Evol; 2009 Sep; 57(3):284-97. PubMed ID: 19631964 [TBL] [Abstract][Full Text] [Related]
13. Terrestrial adaptations in the hands of Equatorius africanus revisited. Patel BA; Susman RL; Rossie JB; Hill A J Hum Evol; 2009 Dec; 57(6):763-72. PubMed ID: 19879632 [TBL] [Abstract][Full Text] [Related]
15. Tibial epiphyseal development: a cross-sectional histologic and histomorphometric study in the New Zealand white rabbit. Masoud I; Shapiro F; Moses A J Orthop Res; 1986; 4(2):212-20. PubMed ID: 3712129 [TBL] [Abstract][Full Text] [Related]
16. The missing segment of the autopod 1st ray: new insights from a morphometric study of the human hand. Pazzaglia UE; Sibilia V; Casati L; Salvi AG; Minini A; Reguzzoni M J Anat; 2018 Dec; 233(6):828-842. PubMed ID: 30368800 [TBL] [Abstract][Full Text] [Related]
17. Radiological studies of variation in ossification of the foot. III. Cone shaped epiphyses of the proximal phalanges. Venning P Am J Phys Anthropol; 1961 Jun; 19(2):131-6. PubMed ID: 13925336 [No Abstract] [Full Text] [Related]
18. Assessing the phylogenetic utility of sequence heterochrony: evolution of avian ossification sequences as a case study. Maxwell EE; Harrison LB; Larsson HC Zoology (Jena); 2010 Jan; 113(1):57-66. PubMed ID: 20116981 [TBL] [Abstract][Full Text] [Related]
19. Selection for increased tibia length in mice alters skull shape through parallel changes in developmental mechanisms. Unger CM; Devine J; Hallgrímsson B; Rolian C Elife; 2021 Apr; 10():. PubMed ID: 33899741 [TBL] [Abstract][Full Text] [Related]
20. The correspondence between proximal phalanx morphology and locomotion: implications for inferring the locomotor behavior of fossil catarrhines. Rein TR Am J Phys Anthropol; 2011 Nov; 146(3):435-45. PubMed ID: 21953545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]