These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 2364086)
1. A spectroelectrochemical study of microperoxidase at bare and gold-plated RVC thin-layer electrodes. Zamponi S; Santucci R; Brunori M; Marassi R Biochim Biophys Acta; 1990 Jun; 1034(3):294-7. PubMed ID: 2364086 [TBL] [Abstract][Full Text] [Related]
2. Time-resolved UV-visible spectroelectrochemistry using transparent 3D-mesoporous nanocrystalline ITO electrodes. Renault C; Harris KD; Brett MJ; Balland V; Limoges B Chem Commun (Camb); 2011 Feb; 47(6):1863-5. PubMed ID: 21127815 [TBL] [Abstract][Full Text] [Related]
3. Cyclic voltammetry and voltabsorptometry studies of redox proteins immobilised on nanocrystalline tin dioxide electrodes. Astuti Y; Topoglidis E; Gilardi G; Durrant JR Bioelectrochemistry; 2004 Jun; 63(1-2):55-9. PubMed ID: 15110248 [TBL] [Abstract][Full Text] [Related]
4. Membrane-entrapped microperoxidase as a 'solid-state' promoter in the electrochemistry of soluble metalloproteins. Brunori M; Santucci R; Campanella L; Tranchida G Biochem J; 1989 Nov; 264(1):301-4. PubMed ID: 2557833 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical current rectification at bio-functionalized electrodes. Liu Y; Offenhäusser A; Mayer D Bioelectrochemistry; 2010 Feb; 77(2):89-93. PubMed ID: 19631593 [TBL] [Abstract][Full Text] [Related]
6. Use of 'solid-state' promoters in the electrochemistry of cytochrome c at a gold electrode. Santucci R; Faraoni A; Campanella L; Tranchida G; Brunori M Biochem J; 1991 Feb; 273 ( Pt 3)(Pt 3):783-6. PubMed ID: 1847624 [TBL] [Abstract][Full Text] [Related]
7. In situ spectroelectrochemical analysis of quercetin in acidic medium. He JB; Yu CL; Duan TL; Deng N Anal Sci; 2009 Mar; 25(3):373-7. PubMed ID: 19276593 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical studies of cytochrome c disulfide at gold electrodes. Zhou Y; Nagaoka T; Zhu G Biophys Chem; 1999 May; 79(1):55-62. PubMed ID: 10371022 [TBL] [Abstract][Full Text] [Related]
9. Study of the adsorption and oxidation of antioxidant rutin by cyclic voltammetry-voltabsorptometry. He JB; Wang Y; Deng N; Lin XQ Bioelectrochemistry; 2007 Nov; 71(2):157-63. PubMed ID: 17462963 [TBL] [Abstract][Full Text] [Related]
10. Transparent gold as a platform for adsorbed protein spectroelectrochemistry: investigation of cytochrome c and azurin. Ashur I; Schulz O; McIntosh CL; Pinkas I; Ros R; Jones AK Langmuir; 2012 Apr; 28(13):5861-71. PubMed ID: 22369317 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen peroxide biosensor based on microperoxidase-11 immobilized on flexible MWCNTs-BC nanocomposite film. Zhang B; Zhou J; Li S; Zhang X; Huang D; He Y; Wang M; Yang G; Shen Y Talanta; 2015 Jan; 131():243-8. PubMed ID: 25281099 [TBL] [Abstract][Full Text] [Related]
12. In situ NMR spectroelectrochemistry of higher sensitivity by large scale electrodes. Klod S; Ziegs F; Dunsch L Anal Chem; 2009 Dec; 81(24):10262-7. PubMed ID: 19911777 [TBL] [Abstract][Full Text] [Related]
13. Soft-landed protein voltammetry: a tool for redox protein characterization. Mazzei F; Favero G; Frasconi M; Tata A; Tuccitto N; Licciardello A; Pepi F Anal Chem; 2008 Aug; 80(15):5937-44. PubMed ID: 18576667 [TBL] [Abstract][Full Text] [Related]
14. Electron transfer reactions of metalloproteins at peptide-modified gold electrodes. Barker PD; Di Gleria K; Hill HA; Lowe VJ Eur J Biochem; 1990 May; 190(1):171-5. PubMed ID: 2163832 [TBL] [Abstract][Full Text] [Related]
15. Direct electrochemistry of heme multicofactor-containing enzymes on alkanethiol-modified gold electrodes. E Ferapontova E; Gorton L Bioelectrochemistry; 2005 Apr; 66(1-2):55-63. PubMed ID: 15833703 [TBL] [Abstract][Full Text] [Related]
16. Protein electrochemistry using graphene-based nano-assembly: an ultrasensitive electrochemical detection of protein molecules via nanoparticle-electrode collisions. Li D; Liu J; Barrow CJ; Yang W Chem Commun (Camb); 2014 Aug; 50(60):8197-200. PubMed ID: 24927153 [TBL] [Abstract][Full Text] [Related]
17. Use of microperoxidase-11 to functionalize tin dioxide electrodes for the optical and electrochemical sensing of hydrogen peroxide. Astuti Y; Topoglidis E; Durrant JR Anal Chim Acta; 2011 Feb; 686(1-2):126-32. PubMed ID: 21237318 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical and spectroelectrochemical behavior of the TCNQ(0/)(-) couple on a glassy carbon electrode. Layer-by-layer nucleation and growth. Gómez L; Rodríguez-Amaro R Langmuir; 2006 Aug; 22(17):7431-6. PubMed ID: 16893249 [TBL] [Abstract][Full Text] [Related]
19. Unraveling the mechanism of catalytic reduction of O2 by microperoxidase-11 adsorbed within a transparent 3D-nanoporous ITO film. Renault C; Andrieux CP; Tucker RT; Brett MJ; Balland V; Limoges B J Am Chem Soc; 2012 Apr; 134(15):6834-45. PubMed ID: 22448869 [TBL] [Abstract][Full Text] [Related]
20. Direct spectroelectrochemistry of peroxidases immobilised on mesoporous metal oxide electrodes: Towards reagentless hydrogen peroxide sensing. Astuti Y; Topoglidis E; Cass AG; Durrant JR Anal Chim Acta; 2009 Aug; 648(1):2-6. PubMed ID: 19616685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]