These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 23641200)

  • 1. Control of a specific motor program by a small brain area in zebrafish.
    Fajardo O; Zhu P; Friedrich RW
    Front Neural Circuits; 2013; 7():67. PubMed ID: 23641200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum.
    Gahtan E; Tanger P; Baier H
    J Neurosci; 2005 Oct; 25(40):9294-303. PubMed ID: 16207889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinotectal circuitry of larval zebrafish is adapted to detection and pursuit of prey.
    Förster D; Helmbrecht TO; Mearns DS; Jordan L; Mokayes N; Baier H
    Elife; 2020 Oct; 9():. PubMed ID: 33044168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-wide Organization of Neuronal Activity and Convergent Sensorimotor Transformations in Larval Zebrafish.
    Chen X; Mu Y; Hu Y; Kuan AT; Nikitchenko M; Randlett O; Chen AB; Gavornik JP; Sompolinsky H; Engert F; Ahrens MB
    Neuron; 2018 Nov; 100(4):876-890.e5. PubMed ID: 30473013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visuomotor transformations underlying hunting behavior in zebrafish.
    Bianco IH; Engert F
    Curr Biol; 2015 Mar; 25(7):831-46. PubMed ID: 25754638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topography of a Visuomotor Transformation.
    Helmbrecht TO; Dal Maschio M; Donovan JC; Koutsouli S; Baier H
    Neuron; 2018 Dec; 100(6):1429-1445.e4. PubMed ID: 30392799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensorimotor decision making in the zebrafish tectum.
    Barker AJ; Baier H
    Curr Biol; 2015 Nov; 25(21):2804-2814. PubMed ID: 26592341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the optic tectum for visually evoked orienting and evasive movements.
    Suzuki DG; Pérez-Fernández J; Wibble T; Kardamakis AA; Grillner S
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):15272-15281. PubMed ID: 31296565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apomorphine alters prey-catching patterns in the common toad: behavioral experiments and (14)C-2-deoxyglucose brain mapping studies.
    Glagow M; Ewert J
    Brain Behav Evol; 1999 Oct; 54(4):223-42. PubMed ID: 10592384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Zebrafish Visual System: From Circuits to Behavior.
    Bollmann JH
    Annu Rev Vis Sci; 2019 Sep; 5():269-293. PubMed ID: 31525146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture.
    Trivedi CA; Bollmann JH
    Front Neural Circuits; 2013; 7():86. PubMed ID: 23675322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An interhemispheric neural circuit allowing binocular integration in the optic tectum.
    Gebhardt C; Auer TO; Henriques PM; Rajan G; Duroure K; Bianco IH; Del Bene F
    Nat Commun; 2019 Nov; 10(1):5471. PubMed ID: 31784529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of a multisensory, multifunctional nucleus in the zebrafish midbrain during diverse locomotor behaviors.
    Sankrithi NS; O'Malley DM
    Neuroscience; 2010 Mar; 166(3):970-93. PubMed ID: 20074619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The organization of descending tectofugal pathways underlying orienting in the frog, Rana pipiens. I. Lateralization, parcellation, and an intermediate spatial representation.
    Masino T; Grobstein P
    Exp Brain Res; 1989; 75(2):227-44. PubMed ID: 2785925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The superior colliculus and pretectum in visually guided behavior and visual discrimination in the cat.
    Sprague JM; Berlucchi G; Di Berardino A
    Brain Behav Evol; 1970; 3(1):285-94. PubMed ID: 5522349
    [No Abstract]   [Full Text] [Related]  

  • 16. Optogenetic Manipulation of Olfactory Responses in Transgenic Zebrafish: A Neurobiological and Behavioral Study.
    Jeong YM; Choi TI; Hwang KS; Lee JS; Gerlai R; Kim CH
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pretectal neurons control hunting behaviour.
    Antinucci P; Folgueira M; Bianco IH
    Elife; 2019 Oct; 8():. PubMed ID: 31591961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the midbrain in interhemispheric integration.
    Lyubimov NN; Baziyan BK; Bochorishvili VN
    Neurosci Behav Physiol; 1983; 13(2):101-7. PubMed ID: 6657040
    [No Abstract]   [Full Text] [Related]  

  • 19. The dorsal raphe modulates sensory responsiveness during arousal in zebrafish.
    Yokogawa T; Hannan MC; Burgess HA
    J Neurosci; 2012 Oct; 32(43):15205-15. PubMed ID: 23100441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual pathways for postural control and negative phototaxis in lamprey.
    Ullén F; Deliagina TG; Orlovsky GN; Grillner S
    J Neurophysiol; 1997 Aug; 78(2):960-76. PubMed ID: 9307127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.