These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 23641208)

  • 1. Beyond Noise: Using Temporal ICA to Extract Meaningful Information from High-Frequency fMRI Signal Fluctuations during Rest.
    Boubela RN; Kalcher K; Huf W; Kronnerwetter C; Filzmoser P; Moser E
    Front Hum Neurosci; 2013; 7():168. PubMed ID: 23641208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The spectral diversity of resting-state fluctuations in the human brain.
    Kalcher K; Boubela RN; Huf W; Bartova L; Kronnerwetter C; Derntl B; Pezawas L; Filzmoser P; Nasel C; Moser E
    PLoS One; 2014; 9(4):e93375. PubMed ID: 24728207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BOLD fractional contribution to resting-state functional connectivity above 0.1 Hz.
    Chen JE; Glover GH
    Neuroimage; 2015 Feb; 107():207-218. PubMed ID: 25497686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studying the Spatial Distribution of Physiological Effects on BOLD Signals Using Ultrafast fMRI.
    Tong Y; Frederick BD
    Front Hum Neurosci; 2014; 8():196. PubMed ID: 24744722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infra-slow EEG fluctuations are correlated with resting-state network dynamics in fMRI.
    Hiltunen T; Kantola J; Abou Elseoud A; Lepola P; Suominen K; Starck T; Nikkinen J; Remes J; Tervonen O; Palva S; Kiviniemi V; Palva JM
    J Neurosci; 2014 Jan; 34(2):356-62. PubMed ID: 24403137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating and mitigating the effects of systemic low frequency oscillations (sLFO) on resting state networks in awake non-human primates using time lag dependent methodology.
    Cao L; Kohut SJ; Frederick BD
    Front Neuroimaging; 2022; 1():1031991. PubMed ID: 37555145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal.
    Shmueli K; van Gelderen P; de Zwart JA; Horovitz SG; Fukunaga M; Jansma JM; Duyn JH
    Neuroimage; 2007 Nov; 38(2):306-20. PubMed ID: 17869543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.
    Yuan H; Zotev V; Phillips R; Drevets WC; Bodurka J
    Neuroimage; 2012 May; 60(4):2062-72. PubMed ID: 22381593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking dynamic resting-state networks at higher frequencies using MR-encephalography.
    Lee HL; Zahneisen B; Hugger T; LeVan P; Hennig J
    Neuroimage; 2013 Jan; 65():216-22. PubMed ID: 23069810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of Temporal and Spatial Independent Component Analysis in Identifying and Removing Low-Frequency Physiological and Motion Effects in Resting-State fMRI.
    Golestani AM; Chen JJ
    Front Neurosci; 2022; 16():867243. PubMed ID: 35757543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional brain hubs and their test-retest reliability: a multiband resting-state functional MRI study.
    Liao XH; Xia MR; Xu T; Dai ZJ; Cao XY; Niu HJ; Zuo XN; Zang YF; He Y
    Neuroimage; 2013 Dec; 83():969-82. PubMed ID: 23899725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the detection of high frequency correlations in resting state fMRI.
    Trapp C; Vakamudi K; Posse S
    Neuroimage; 2018 Jan; 164():202-213. PubMed ID: 28163143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological noise correction using ECG-derived respiratory signals for enhanced mapping of spontaneous neuronal activity with simultaneous EEG-fMRI.
    Abreu R; Nunes S; Leal A; Figueiredo P
    Neuroimage; 2017 Jul; 154():115-127. PubMed ID: 27530551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined spatiotemporal ICA (stICA) for continuous and dynamic lag structure analysis of MREG data.
    Raatikainen V; Huotari N; Korhonen V; Rasila A; Kananen J; Raitamaa L; Keinänen T; Kantola J; Tervonen O; Kiviniemi V
    Neuroimage; 2017 Mar; 148():352-363. PubMed ID: 28088482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the fMRI Signal Fluctuation with Recurrent Neural Networks Trained on Vascular Network Dynamics.
    Sobczak F; He Y; Sejnowski TJ; Yu X
    Cereb Cortex; 2021 Jan; 31(2):826-844. PubMed ID: 32940658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can apparent resting state connectivity arise from systemic fluctuations?
    Tong Y; Hocke LM; Fan X; Janes AC; Frederick Bd
    Front Hum Neurosci; 2015; 9():285. PubMed ID: 26029095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring the Influence of Physiological Noise Corrections on ICA Derived Intrinsic Connectivity Brain Networks in Rest and Task fMRI.
    Jarrahi B; Mackey S
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1046-1049. PubMed ID: 30440570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periods of rest in fMRI contain individual spontaneous events which are related to slowly fluctuating spontaneous activity.
    Petridou N; Gaudes CC; Dryden IL; Francis ST; Gowland PA
    Hum Brain Mapp; 2013 Jun; 34(6):1319-29. PubMed ID: 22331588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional integration between brain regions at rest occurs in multiple-frequency bands.
    Gohel SR; Biswal BB
    Brain Connect; 2015 Feb; 5(1):23-34. PubMed ID: 24702246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractal analysis of spontaneous fluctuations of the BOLD signal in the human brain networks.
    Li YC; Huang YA
    J Magn Reson Imaging; 2014 May; 39(5):1118-25. PubMed ID: 24027126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.