These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 23641245)

  • 1. Cysteine-based redox regulation and signaling in plants.
    Couturier J; Chibani K; Jacquot JP; Rouhier N
    Front Plant Sci; 2013; 4():105. PubMed ID: 23641245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation.
    Shi Y; Carroll KS
    Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteine thiol sulfinic acid in plant stress signaling.
    Huang J; De Veirman L; Van Breusegem F
    Plant Cell Environ; 2024 Aug; 47(8):2766-2779. PubMed ID: 38251793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications.
    Moldogazieva NT; Mokhosoev IM; Feldman NB; Lutsenko SV
    Free Radic Res; 2018 May; 52(5):507-543. PubMed ID: 29589770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox Regulation
    Matsui R; Ferran B; Oh A; Croteau D; Shao D; Han J; Pimentel DR; Bachschmid MM
    Antioxid Redox Signal; 2020 Apr; 32(10):677-700. PubMed ID: 31813265
    [No Abstract]   [Full Text] [Related]  

  • 6. The emerging roles of protein glutathionylation in chloroplasts.
    Zaffagnini M; Bedhomme M; Lemaire SD; Trost P
    Plant Sci; 2012 Apr; 185-186():86-96. PubMed ID: 22325869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases.
    Gu L; Robinson RA
    Proteomics Clin Appl; 2016 Dec; 10(12):1159-1177. PubMed ID: 27666938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible glutathionylation of Sir2 by monothiol glutaredoxins Grx3/4 regulates stress resistance.
    Vall-Llaura N; Reverter-Branchat G; Vived C; Weertman N; Rodríguez-Colman MJ; Cabiscol E
    Free Radic Biol Med; 2016 Jul; 96():45-56. PubMed ID: 27085841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thioredoxins, glutaredoxins, and glutathionylation: new crosstalks to explore.
    Michelet L; Zaffagnini M; Massot V; Keryer E; Vanacker H; Miginiac-Maslow M; Issakidis-Bourguet E; Lemaire SD
    Photosynth Res; 2006 Sep; 89(2-3):225-45. PubMed ID: 17089213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ROSics: chemistry and proteomics of cysteine modifications in redox biology.
    Kim HJ; Ha S; Lee HY; Lee KJ
    Mass Spectrom Rev; 2015; 34(2):184-208. PubMed ID: 24916017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular responses of legumes to abiotic stress: post-translational modifications of proteins and redox signaling.
    Matamoros MA; Becana M
    J Exp Bot; 2021 Aug; 72(16):5876-5892. PubMed ID: 33453107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of altered redox regulation in neurodegenerative diseases--focus on S--glutathionylation.
    Sabens Liedhegner EA; Gao XH; Mieyal JJ
    Antioxid Redox Signal; 2012 Mar; 16(6):543-66. PubMed ID: 22066468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein cysteine oxidation in redox signaling: Caveats on sulfenic acid detection and quantification.
    Forman HJ; Davies MJ; Krämer AC; Miotto G; Zaccarin M; Zhang H; Ursini F
    Arch Biochem Biophys; 2017 Mar; 617():26-37. PubMed ID: 27693037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Redox modifications of cysteine residues in plant proteins].
    Szworst-Łupina D; Rusinowski Z; Zagdańska B
    Postepy Biochem; 2015; 61(2):191-7. PubMed ID: 26689012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation and S-nitrosylation of cysteines in human cytosolic and mitochondrial glutaredoxins: effects on structure and activity.
    Hashemy SI; Johansson C; Berndt C; Lillig CH; Holmgren A
    J Biol Chem; 2007 May; 282(19):14428-36. PubMed ID: 17355958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox active thiol sensors of oxidative and nitrosative stress.
    Vázquez-Torres A
    Antioxid Redox Signal; 2012 Nov; 17(9):1201-14. PubMed ID: 22257022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation.
    Shelton MD; Chock PB; Mieyal JJ
    Antioxid Redox Signal; 2005; 7(3-4):348-66. PubMed ID: 15706083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox modifications of protein-thiols: emerging roles in cell signaling.
    Biswas S; Chida AS; Rahman I
    Biochem Pharmacol; 2006 Feb; 71(5):551-64. PubMed ID: 16337153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of cellular oxidative stress response by stoichiometric redox proteomics.
    Zhang T; Gaffrey MJ; Li X; Qian WJ
    Am J Physiol Cell Physiol; 2021 Feb; 320(2):C182-C194. PubMed ID: 33264075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant redox proteomics.
    Navrot N; Finnie C; Svensson B; Hägglund P
    J Proteomics; 2011 Aug; 74(8):1450-62. PubMed ID: 21406256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.