BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23641248)

  • 1. Sub-cellular proteomics of Medicago truncatula.
    Lee J; Lei Z; Watson BS; Sumner LW
    Front Plant Sci; 2013; 4():112. PubMed ID: 23641248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Medicago truncatula proteomics.
    Colditz F; Braun HP
    J Proteomics; 2010 Sep; 73(10):1974-85. PubMed ID: 20621211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sub-cellular proteomic analysis of a Medicago truncatula root microsomal fraction.
    Valot B; Gianinazzi S; Eliane DG
    Phytochemistry; 2004 Jun; 65(12):1721-32. PubMed ID: 15276433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis.
    Aloui A; Recorbet G; Lemaître-Guillier C; Mounier A; Balliau T; Zivy M; Wipf D; Dumas-Gaudot E
    Mycorrhiza; 2018 Jan; 28(1):1-16. PubMed ID: 28725961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Mitochondrial Complexome of Medicago truncatula.
    Kiirika LM; Behrens C; Braun HP; Colditz F
    Front Plant Sci; 2013; 4():84. PubMed ID: 23596449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula.
    Aloui A; Recorbet G; Robert F; Schoefs B; Bertrand M; Henry C; Gianinazzi-Pearson V; Dumas-Gaudot E; Aschi-Smiti S
    BMC Plant Biol; 2011 May; 11():75. PubMed ID: 21545723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A set of fluorescent protein-based markers expressed from constitutive and arbuscular mycorrhiza-inducible promoters to label organelles, membranes and cytoskeletal elements in Medicago truncatula.
    Ivanov S; Harrison MJ
    Plant J; 2014 Dec; 80(6):1151-63. PubMed ID: 25329881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Root Development in Medicago truncatula: Lessons from Genetics to Functional Genomics.
    Proust H; Hartmann C; Crespi M; Lelandais-Brière C
    Methods Mol Biol; 2018; 1822():205-239. PubMed ID: 30043307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Medicago truncatula Genome: Genomic Data Availability.
    Burks D; Azad R; Wen J; Dickstein R
    Methods Mol Biol; 2018; 1822():39-59. PubMed ID: 30043295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement.
    Ramalingam A; Kudapa H; Pazhamala LT; Weckwerth W; Varshney RK
    Front Plant Sci; 2015; 6():1116. PubMed ID: 26734026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mitochondrial proteome of the model legume Medicago truncatula.
    Dubinin J; Braun HP; Schmitz U; Colditz F
    Biochim Biophys Acta; 2011 Dec; 1814(12):1658-68. PubMed ID: 21893218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LeGOO: An Expertized Knowledge Database for the Model Legume Medicago truncatula.
    Carrï Re SB; Verdenaud M; Gough C; Gouzy JRM; Gamas P
    Plant Cell Physiol; 2020 Jan; 61(1):203-211. PubMed ID: 31605615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes.
    Grimsrud PA; den Os D; Wenger CD; Swaney DL; Schwartz D; Sussman MR; Ané JM; Coon JJ
    Plant Physiol; 2010 Jan; 152(1):19-28. PubMed ID: 19923235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Medicago truncatula small protein proteome and peptidome.
    Zhang K; McKinlay C; Hocart CH; Djordjevic MA
    J Proteome Res; 2006 Dec; 5(12):3355-67. PubMed ID: 17137337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of Medicago truncatula CLE34 and CLE35 in nitrate and rhizobia regulation of nodulation.
    Mens C; Hastwell AH; Su H; Gresshoff PM; Mathesius U; Ferguson BJ
    New Phytol; 2021 Mar; 229(5):2525-2534. PubMed ID: 33067828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nodule Inception Is Not Required for Arbuscular Mycorrhizal Colonization of
    Kumar A; Cousins DR; Liu CW; Xu P; Murray JD
    Plants (Basel); 2020 Jan; 9(1):. PubMed ID: 31935845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NIN Is Involved in the Regulation of Arbuscular Mycorrhizal Symbiosis.
    Guillotin B; Couzigou JM; Combier JP
    Front Plant Sci; 2016; 7():1704. PubMed ID: 27899928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Phytocyanin Gene Family in Legume Plants and their Involvement in Nodulation of Medicago truncatula.
    Sun Y; Wu Z; Wang Y; Yang J; Wei G; Chou M
    Plant Cell Physiol; 2019 Apr; 60(4):900-915. PubMed ID: 30649463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell autonomous and non-cell autonomous control of rhizobial and mycorrhizal infection in Medicago truncatula.
    Rival P; Bono JJ; Gough C; Bensmihen S; Rosenberg C
    Plant Signal Behav; 2013 Feb; 8(2):e22999. PubMed ID: 23221781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MALDI mass spectrometry-assisted molecular imaging of metabolites during nitrogen fixation in the Medicago truncatula-Sinorhizobium meliloti symbiosis.
    Ye H; Gemperline E; Venkateshwaran M; Chen R; Delaux PM; Howes-Podoll M; Ané JM; Li L
    Plant J; 2013 Jul; 75(1):130-145. PubMed ID: 23551619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.