These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 2364133)
1. Interval estimation of the LD50 based on an up-and-down experiment. Choi SC Biometrics; 1990 Jun; 46(2):485-92. PubMed ID: 2364133 [TBL] [Abstract][Full Text] [Related]
2. Kernel estimates of dose response. Staniswalis JG; Cooper V Biometrics; 1988 Dec; 44(4):1103-19. PubMed ID: 3233249 [TBL] [Abstract][Full Text] [Related]
3. Sequential method of estimating the LD50 using a modified up-and-down rule. Jung H; Choi SC J Biopharm Stat; 1994 Mar; 4(1):19-30. PubMed ID: 8019581 [TBL] [Abstract][Full Text] [Related]
4. Efficient design for estimation of median lethal dose and quantal dose-response curves. Kalish LA Biometrics; 1990 Sep; 46(3):737-48. PubMed ID: 2242412 [TBL] [Abstract][Full Text] [Related]
6. Estimation of a parameter and its exact confidence interval following sequential sample size reestimation trials. Cheng Y; Shen Y Biometrics; 2004 Dec; 60(4):910-8. PubMed ID: 15606411 [TBL] [Abstract][Full Text] [Related]
7. Interval estimation of the median lethal dose. Williams DA Biometrics; 1986 Sep; 42(3):641-5. PubMed ID: 3567296 [TBL] [Abstract][Full Text] [Related]
8. Small-sample confidence sets for the MTD in a phase I clinical trial. Storer BE Biometrics; 1993 Dec; 49(4):1117-25. PubMed ID: 8117905 [TBL] [Abstract][Full Text] [Related]
9. Generalized confidence intervals for ratios of regression coefficients with applications to bioassays. Bebu I; Seillier-Moiseiwitsch F; Mathew T Biom J; 2009 Dec; 51(6):1047-58. PubMed ID: 19894218 [TBL] [Abstract][Full Text] [Related]
10. Interval estimation of the mean response in a log-regression model. Wu J; Wong AC; Wei W Stat Med; 2006 Jun; 25(12):2125-35. PubMed ID: 16220472 [TBL] [Abstract][Full Text] [Related]
11. A new approach for interval estimation and hypothesis testing of a certain intraclass correlation coefficient: the generalized variable method. Tian L; Cappelleri JC Stat Med; 2004 Jul; 23(13):2125-35. PubMed ID: 15211607 [TBL] [Abstract][Full Text] [Related]
12. N-mixture models for estimating population size from spatially replicated counts. Royle JA Biometrics; 2004 Mar; 60(1):108-15. PubMed ID: 15032780 [TBL] [Abstract][Full Text] [Related]
13. A note on the conditional approach to interval estimation in the calibration problem. Lee JJ Biometrics; 1991 Dec; 47(4):1573-80. PubMed ID: 1786330 [TBL] [Abstract][Full Text] [Related]
14. Small-sample confidence limits for parameters under inequality constraints with application to quantal bioassay. Morris MD Biometrics; 1988 Dec; 44(4):1083-92. PubMed ID: 3233247 [TBL] [Abstract][Full Text] [Related]
15. Bootstrap estimation of benchmark doses and confidence limits with clustered quantal data. Zhu Y; Wang T; Jelsovsky JZ Risk Anal; 2007 Apr; 27(2):447-65. PubMed ID: 17511711 [TBL] [Abstract][Full Text] [Related]
16. Confidence intervals of effect size in randomized comparative parallel-group studies. Wu J; Jiang G; Wei W Stat Med; 2006 Feb; 25(4):639-51. PubMed ID: 16158411 [TBL] [Abstract][Full Text] [Related]
17. Confidence intervals of effect size for paired studies. Wu J; Jiang G Biom J; 2007 Aug; 49(5):765-73. PubMed ID: 17634978 [TBL] [Abstract][Full Text] [Related]
18. Likelihood-based confidence intervals for a log-normal mean. Wu J; Wong AC; Jiang G Stat Med; 2003 Jun; 22(11):1849-60. PubMed ID: 12754720 [TBL] [Abstract][Full Text] [Related]
19. Nonparametric confidence intervals for Tmax in sequence-stratified crossover studies. Willavize SA; Morgenthien EA Pharm Stat; 2008; 7(1):9-19. PubMed ID: 17256803 [TBL] [Abstract][Full Text] [Related]
20. Confidence interval construction for proportion difference in small-sample paired studies. Tang ML; Tang NS; Chan IS Stat Med; 2005 Dec; 24(23):3565-79. PubMed ID: 16261646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]