BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23641719)

  • 1. Simple method to enhance the photostability of the fluorescence reporter R6G for prolonged single-molecule studies.
    Guo L; Gai F
    J Phys Chem A; 2013 Jul; 117(29):6164-70. PubMed ID: 23641719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative accounting of dye leakage and photobleaching in single lipid vesicle measurements: Implications for biomacromolecular interaction analysis.
    Park S; Jackman JA; Cho NJ
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110338. PubMed ID: 31301580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confeito-like assembly of organosilicate-caged fluorophores: ultrabright suprananoparticles for fluorescence imaging.
    Bok S; Korampally V; Polo-Parada L; Mamidi V; Baker GA; Gangopadhyay K; Folk WR; Dasgupta PK; Gangopadhyay S
    Nanotechnology; 2012 May; 23(17):175601. PubMed ID: 22481044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy.
    Eggeling C; Volkmer A; Seidel CA
    Chemphyschem; 2005 May; 6(5):791-804. PubMed ID: 15884061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micelle-vesicle-micelle transition in aqueous solution of anionic surfactant and cationic imidazolium surfactants: Alteration of the location of different fluorophores.
    Dutta R; Ghosh S; Banerjee P; Kundu S; Sarkar N
    J Colloid Interface Sci; 2017 Mar; 490():762-773. PubMed ID: 27997846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the adsorptive behavior of water-soluble dye molecules (rhodamine 6G) at the air-water interface using confocal fluorescence microscope.
    Zheng XY; Harata A; Ogawa T
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Feb; 57(2):315-22. PubMed ID: 11206566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic device for single-molecule experiments with enhanced photostability.
    Lemke EA; Gambin Y; Vandelinder V; Brustad EM; Liu HW; Schultz PG; Groisman A; Deniz AA
    J Am Chem Soc; 2009 Sep; 131(38):13610-2. PubMed ID: 19772358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic investigations to reveal the nature of interactions between the haem protein myoglobin and the dye rhodamine 6G.
    Mandal P; Bardhan M; Ganguly T
    Luminescence; 2012; 27(4):285-91. PubMed ID: 21882172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How does the surface charge of ionic surfactant and cholesterol forming vesicles control rotational and translational motion of rhodamine 6G perchlorate (R6G ClO₄)?
    Ghosh S; Roy A; Banik D; Kundu N; Kuchlyan J; Dhir A; Sarkar N
    Langmuir; 2015 Mar; 31(8):2310-20. PubMed ID: 25643899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-molecule studies of oligomer extraction and uptake of dyes in poly(dimethylsiloxane) films.
    Lange JJ; Collinson MM; Culbertson CT; Higgins DA
    Anal Chem; 2009 Dec; 81(24):10089-96. PubMed ID: 19928808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of surfactants on the molecular aggregation of rhodamine dyes in aqueous solutions.
    Tajalli H; Ghanadzadeh Gilani A; Zakerhamidi MS; Moghadam M
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 May; 72(4):697-702. PubMed ID: 19147398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of rhodamine 6G with different types of clay minerals.
    Li Z; Potter N; Rasmussen J; Weng J; Lv G
    Chemosphere; 2018 Jul; 202():127-135. PubMed ID: 29567610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acidity effects on the fluorescence properties and adsorptive behavior of rhodamine 6G molecules at the air-water interface studied with confocal fluorescence microscopy.
    Zheng XY; Wachi M; Harata A; Hatano Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Apr; 60(5):1085-90. PubMed ID: 15084327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid- and solution-phase synthesis and application of R6G dual-labeled oligonucleotide probes.
    Skoblov AY; Vichuzhanin MV; Farzan VM; Veselova OA; Konovalova TA; Podkolzin AT; Shipulin GA; Zatsepin TS
    Bioorg Med Chem; 2015 Oct; 23(20):6749-56. PubMed ID: 26392371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence imaging of stained red blood cells with simultaneous resonance Raman photostability analysis.
    Talib AJ; Fisher A; Voronine DV; Sinyukov AM; Bustamante Lopez SC; Ambardar S; Meissner KE; Scully MO; Sokolov AV
    Analyst; 2019 Jul; 144(14):4362-4370. PubMed ID: 31197297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid state dye lasers: rhodamines in silica-zirconia materials.
    Schultheiss S; Yariv E; Reisfeld R; Breuer HD
    Photochem Photobiol Sci; 2002 May; 1(5):320-3. PubMed ID: 12653469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence correlation spectroscopy as a tool to investigate single molecule probe dynamics in thin polymer films.
    Casoli A; Schönhoff M
    Biol Chem; 2001 Mar; 382(3):363-9. PubMed ID: 11347882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence quenching of dyes by tryptophan: interactions at atomic detail from combination of experiment and computer simulation.
    Vaiana AC; Neuweiler H; Schulz A; Wolfrum J; Sauer M; Smith JC
    J Am Chem Soc; 2003 Nov; 125(47):14564-72. PubMed ID: 14624606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodamine-inspired far-red to near-infrared dyes and their application as fluorescence probes.
    Sun YQ; Liu J; Lv X; Liu Y; Zhao Y; Guo W
    Angew Chem Int Ed Engl; 2012 Jul; 51(31):7634-6. PubMed ID: 22674799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/rhodamine B.
    Samy R; Glawdel T; Ren CL
    Anal Chem; 2008 Jan; 80(2):369-75. PubMed ID: 18081260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.