These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23641719)

  • 21. Two-photon interactions at single fluorescent molecule level.
    Cannone F; Chirico G; Diaspro A
    J Biomed Opt; 2003 Jul; 8(3):391-5. PubMed ID: 12880344
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A detailed spectroscopic study on the interaction of Rhodamine 6G with human hemoglobin.
    Mandal P; Bardhan M; Ganguly T
    J Photochem Photobiol B; 2010 May; 99(2):78-86. PubMed ID: 20346694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Circumvention of fluorophore photobleaching in fluorescence fluctuation experiments: a beam scanning approach.
    Satsoura D; Leber B; Andrews DW; Fradin C
    Chemphyschem; 2007 Apr; 8(6):834-48. PubMed ID: 17394281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Humidity-dependent reversible aggregation of rhodamine 6G dye immobilized within layered niobate K4Nb6O17.
    Shinozaki R; Nakato T
    Langmuir; 2004 Aug; 20(18):7583-8. PubMed ID: 15323505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular mechanics force field parameterization of the fluorescent probe rhodamine 6G using automated frequency matching.
    Vaiana AC; Schulz A; Wolfrum J; Sauer M; Smith JC
    J Comput Chem; 2003 Apr; 24(5):632-9. PubMed ID: 12632478
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-photon thermal bleaching of single fluorescent molecules.
    Chirico G; Cannone F; Baldini G; Diaspro A
    Biophys J; 2003 Jan; 84(1):588-98. PubMed ID: 12524312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of various bicolor fluorescent micropatterns on a single polymer film based on concurrent photobleaching and photobase generation.
    Chae KH; Kim HS
    Macromol Rapid Commun; 2015 Mar; 36(6):558-65. PubMed ID: 25676680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide.
    Ren H; Kulkarni DD; Kodiyath R; Xu W; Choi I; Tsukruk VV
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2459-70. PubMed ID: 24494630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly sensitive turn-on biosensors by regulating fluorescent dye assembly on liposome surfaces.
    Seo S; Kwon MS; Phillips AW; Seo D; Kim J
    Chem Commun (Camb); 2015 Jun; 51(50):10229-32. PubMed ID: 26022090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study on the Interaction between Rhodamine Dyes and Allura Red Based on Fluorescence Spectra and Its Analytical Application in Soft Drinks.
    Sun Q; Yang L; Yang J; Liu S; Hu X
    Anal Sci; 2017; 33(10):1181-1187. PubMed ID: 28993594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hidden Markov model analysis of multichromophore photobleaching.
    Messina TC; Kim H; Giurleo JT; Talaga DS
    J Phys Chem B; 2006 Aug; 110(33):16366-76. PubMed ID: 16913765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acidification of the oxygen scavenging system in single-molecule fluorescence studies: in situ sensing with a ratiometric dual-emission probe.
    Shi X; Lim J; Ha T
    Anal Chem; 2010 Jul; 82(14):6132-8. PubMed ID: 20583766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lumos maxima - How robust fluorophores resist photobleaching?
    Zhang Y; Ling J; Liu T; Chen Z
    Curr Opin Chem Biol; 2024 Apr; 79():102439. PubMed ID: 38432145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The charge transferring between silver nanoparticles and R6G].
    Guo L; Zhang X; Du Z; Huang Y; Mo Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Feb; 21(1):16-8. PubMed ID: 12953567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy.
    Xie L; Ling X; Fang Y; Zhang J; Liu Z
    J Am Chem Soc; 2009 Jul; 131(29):9890-1. PubMed ID: 19572745
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bypassing bleaching with fluxional fluorophores.
    Strack R
    Nat Methods; 2019 May; 16(5):357. PubMed ID: 31040423
    [No Abstract]   [Full Text] [Related]  

  • 37. Synthesis of an MOF-based Hg
    Li WY; Yang S; Li YA; Li QY; Guan Q; Dong YB
    Dalton Trans; 2019 Nov; 48(44):16502-16508. PubMed ID: 31528960
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of covalently Nile Red and covalently Rhodamine labeled fluorescent polymer micelles for the improved imaging of the respective drug delivery system.
    Trubitsyn G; Nguyen VN; Di Tommaso C; Borchard G; Gurny R; Möller M
    Eur J Pharm Biopharm; 2019 Sep; 142():480-487. PubMed ID: 31336183
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Liposomal nanoformulations of rhodamine for targeted photodynamic inactivation of multidrug resistant gram negative bacteria in sewage treatment plant.
    Vimaladevi M; Divya KC; Girigoswami A
    J Photochem Photobiol B; 2016 Sep; 162():146-152. PubMed ID: 27371913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of poly-HEMA hydrophilic gel environment on the photo-physical behavior of rhodamine dyes.
    Ghanadzadeh A; Sariri R; Ghanadzadeh H; Zakerhamidi MS
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Feb; 61(4):659-63. PubMed ID: 15649798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.