These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23641760)

  • 21. Physical models of renal malignancies using standard cross-sectional imaging and 3-dimensional printers: a pilot study.
    Silberstein JL; Maddox MM; Dorsey P; Feibus A; Thomas R; Lee BR
    Urology; 2014 Aug; 84(2):268-72. PubMed ID: 24962843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Virtual reality on the web: the potentials of different methodologies and visualization techniques for scientific research and medical education.
    Kling-Petersen T; Pascher R; Rydmark M
    Stud Health Technol Inform; 1999; 62():181-6. PubMed ID: 10538352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Virtual reality haptic human dissection.
    Needham C; Wilkinson C; Soames R
    Stud Health Technol Inform; 2011; 163():397-9. PubMed ID: 21335827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The virtual dissecting room: Creating highly detailed anatomy models for educational purposes.
    Zilverschoon M; Vincken KL; Bleys RL
    J Biomed Inform; 2017 Jan; 65():58-75. PubMed ID: 27884788
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional temporomandibular joint modeling and animation.
    Cascone P; Rinaldi F; Pagnoni M; Marianetti TM; Tedaldi M
    J Craniofac Surg; 2008 Nov; 19(6):1526-31. PubMed ID: 19098544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a highly detailed virtual model eye.
    Reeves GM; Lambert S; Wells AP
    Ophthalmic Surg Lasers Imaging; 2006; 37(2):165-8. PubMed ID: 16583643
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Augmented reality for anatomical education.
    Thomas RG; John NW; Delieu JM
    J Vis Commun Med; 2010 Mar; 33(1):6-15. PubMed ID: 20297908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of functional simulation of renal cancer in virtual reality environments.
    Knudsen BE; Campbell G; Kennedy A; Amann J; Beiko DT; Watterson JD; Chew BH; Denstedt JD; Pautler SE
    Urology; 2005 Oct; 66(4):732-5. PubMed ID: 16230126
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Innovative procedure for computer-assisted genioplasty: three-dimensional cephalometry, rapid-prototyping model and surgical splint.
    Olszewski R; Tranduy K; Reychler H
    Int J Oral Maxillofac Surg; 2010 Jul; 39(7):721-4. PubMed ID: 20417056
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-Dimensional Modeling May Improve Surgical Education and Clinical Practice.
    Jones DB; Sung R; Weinberg C; Korelitz T; Andrews R
    Surg Innov; 2016 Apr; 23(2):189-95. PubMed ID: 26423911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An efficient virtual dissection tool to create generic models for anatomical atlases.
    Xiao M; Soh J; Meruvia-Pastor O; Osborn D; Lam N; Hallgrímsson B; Sensen CW
    Stud Health Technol Inform; 2009; 142():426-8. PubMed ID: 19377199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stereolithographic biomodelling to create tangible hard copies of the ethmoidal labyrinth air cells based on the visible human project.
    Kapakin S
    Folia Morphol (Warsz); 2011 Feb; 70(1):33-40. PubMed ID: 21604251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3 D printed replica of the human temporal bone intended for teaching gross anatomy.
    Skrzat J; Zdilla MJ; Brzegowy P; Hołda M
    Folia Med Cracov; 2019; 59(3):23-30. PubMed ID: 31891357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Web-based stereoscopic visualization for the global anatomy classroom.
    Kaspar M; Dech F; Parsad NM; Silverstein JC
    Stud Health Technol Inform; 2011; 163():264-70. PubMed ID: 21335801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The WEBD project: a research of new methodologies for a distant-learning 3D system prototype.
    Cemenasco AF; Bianchi CC; Tornincasa S; Bianchi SD
    Dentomaxillofac Radiol; 2004 Nov; 33(6):403-8. PubMed ID: 15665235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accuracy of virtual reality and stereolithographic models in maxillo-facial surgical planning.
    Robiony M; Salvo I; Costa F; Zerman N; Bandera C; Filippi S; Felice M; Politi M
    J Craniofac Surg; 2008 Mar; 19(2):482-9. PubMed ID: 18362729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time 3-dimensional virtual reality navigation system with open MRI for breast-conserving surgery.
    Tomikawa M; Hong J; Shiotani S; Tokunaga E; Konishi K; Ieiri S; Tanoue K; Akahoshi T; Maehara Y; Hashizume M
    J Am Coll Surg; 2010 Jun; 210(6):927-33. PubMed ID: 20510801
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preoperative three-dimensional model creation of magnetic resonance brain images as a tool to assist neurosurgical planning.
    Spottiswoode BS; van den Heever DJ; Chang Y; Engelhardt S; Du Plessis S; Nicolls F; Hartzenberg HB; Gretschel A
    Stereotact Funct Neurosurg; 2013; 91(3):162-9. PubMed ID: 23446024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Getting in touch--3D printing in forensic imaging.
    Ebert LC; Thali MJ; Ross S
    Forensic Sci Int; 2011 Sep; 211(1-3):e1-6. PubMed ID: 21602004
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional micro-imaging (μCT) based physical anatomic teaching models: implementation of a new learning aid for routine use in anatomy lectures.
    Wulf J; Rohde I; Koppe T; Winder RJ
    Stud Health Technol Inform; 2012; 173():549-51. PubMed ID: 22357056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.