BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 23641798)

  • 1. Prediction of aluminum, uranium, and co-contaminants precipitation and adsorption during titration of acidic sediments.
    Tang G; Luo W; Watson DB; Brooks SC; Gu B
    Environ Sci Technol; 2013 Jun; 47(11):5787-93. PubMed ID: 23641798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling uranium transport in acidic contaminated groundwater with base addition.
    Zhang F; Luo W; Parker JC; Brooks SC; Watson DB; Jardine PM; Gu B
    J Hazard Mater; 2011 Jun; 190(1-3):863-8. PubMed ID: 21531075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments.
    Szecsody JE; Truex MJ; Qafoku NP; Wellman DM; Resch T; Zhong L
    J Contam Hydrol; 2013 Aug; 151():155-75. PubMed ID: 23851265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequestering uranium and technetium through co-precipitation with aluminum in a contaminated acidic environment.
    Luo W; Kelly SD; Kemner KM; Watson D; Zhou J; Jardine PM; Gu B
    Environ Sci Technol; 2009 Oct; 43(19):7516-22. PubMed ID: 19848170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.
    Bea SA; Wainwright H; Spycher N; Faybishenko B; Hubbard SS; Denham ME
    J Contam Hydrol; 2013 Aug; 151():34-54. PubMed ID: 23707874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uranium(VI) adsorption and surface complexation modeling onto background sediments from the F-Area Savannah River Site.
    Dong W; Tokunaga TK; Davis JA; Wan J
    Environ Sci Technol; 2012 Feb; 46(3):1565-71. PubMed ID: 22191402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uranium release from sediment to groundwater: influence of water chemistry and insights into release mechanisms.
    Alam MS; Cheng T
    J Contam Hydrol; 2014 Aug; 164():72-87. PubMed ID: 24954631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variations of uranium concentrations in a multi-aquifer system under the impact of surface water-groundwater interaction.
    Wu Y; Li J; Wang Y; Xie X
    J Contam Hydrol; 2018 Apr; 211():65-76. PubMed ID: 29559163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface complexation modeling of U(VI) adsorption by aquifer sediments from a former mill tailings site at Rifle, Colorado.
    Hyun SP; Fox PM; Davis JA; Campbell KM; Hayes KF; Long PE
    Environ Sci Technol; 2009 Dec; 43(24):9368-73. PubMed ID: 20000531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishing a geochemical heterogeneity model for a contaminated vadose zone--aquifer system.
    Murray CJ; Zachara JM; McKinley JP; Ward A; Bott YJ; Draper K; Moore D
    J Contam Hydrol; 2013 Oct; 153():122-40. PubMed ID: 23664489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of uranium and technetium sorption during titration of contaminated acidic groundwater.
    Zhang F; Parker JC; Brooks SC; Watson DB; Jardine PM; Gu B
    J Hazard Mater; 2010 Jun; 178(1-3):42-8. PubMed ID: 20116923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of uranyl-calcium-carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments.
    Stewart BD; Mayes MA; Fendorf S
    Environ Sci Technol; 2010 Feb; 44(3):928-34. PubMed ID: 20058915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. U(VI) adsorption on aquifer sediments at the Hanford Site.
    Um W; Serne RJ; Brown CF; Last GV
    J Contam Hydrol; 2007 Aug; 93(1-4):255-69. PubMed ID: 17499879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of uranium and thorium in dolomitic gravel fill and shale saprolite.
    Phillips DH; Watson DB
    J Hazard Mater; 2015 Mar; 285():474-82. PubMed ID: 25544493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of 90Sr and U(VI) in Dounreay sediments following saline inundation and erosion.
    Eagling J; Worsfold PJ; Blake WH; Keith-Roach MJ
    Chemosphere; 2013 Aug; 92(8):911-7. PubMed ID: 23541149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncertainty and variability in laboratory derived sorption parameters of sediments from a uranium in situ recovery site.
    Dangelmayr MA; Reimus PW; Johnson RH; Clay JT; Stone JJ
    J Contam Hydrol; 2018 Jun; 213():28-39. PubMed ID: 29691066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of calcite on uranium(VI) reactive transport in the groundwater-river mixing zone.
    Ma R; Liu C; Greskowiak J; Prommer H; Zachara J; Zheng C
    J Contam Hydrol; 2014 Jan; 156():27-37. PubMed ID: 24240103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uranium incorporation into aluminum-substituted ferrihydrite during iron(ii)-induced transformation.
    Massey MS; Lezama-Pacheco JS; Michel FM; Fendorf S
    Environ Sci Process Impacts; 2014 Sep; 16(9):2137-44. PubMed ID: 25124142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uranium removal from contaminated groundwater by synthetic resins.
    Phillips DH; Gu B; Watson DB; Parmele CS
    Water Res; 2008 Jan; 42(1-2):260-8. PubMed ID: 17697694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of (calcium-)uranyl-carbonate complexation on U(VI) sorption on Ca- and Na-bentonites.
    Meleshyn A; Azeroual M; Reeck T; Houben G; Riebe B; Bunnenberg C
    Environ Sci Technol; 2009 Jul; 43(13):4896-901. PubMed ID: 19673282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.