These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 23641868)

  • 1. Top-down network analysis to drive bottom-up modeling of physiological processes.
    Poirel CL; Rodrigues RR; Chen KC; Tyson JJ; Murali TM
    J Comput Biol; 2013 May; 20(5):409-18. PubMed ID: 23641868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic modeling of yeast meiotic initiation.
    Ray D; Su Y; Ye P
    BMC Syst Biol; 2013 May; 7():37. PubMed ID: 23631506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CDC5 inhibits the hyperphosphorylation of the checkpoint kinase Rad53, leading to checkpoint adaptation.
    Vidanes GM; Sweeney FD; Galicia S; Cheung S; Doyle JP; Durocher D; Toczyski DP
    PLoS Biol; 2010 Jan; 8(1):e1000286. PubMed ID: 20126259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle.
    Gibbs DL; Shmulevich I
    PLoS Comput Biol; 2017 Jun; 13(6):e1005591. PubMed ID: 28628618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the network of cell cycle transcription factors in the yeast Saccharomyces cerevisiae.
    Cokus S; Rose S; Haynor D; Grønbech-Jensen N; Pellegrini M
    BMC Bioinformatics; 2006 Aug; 7():381. PubMed ID: 16914048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer evaluation of network dynamics models with application to cell cycle control in budding yeast.
    Allen NA; Chen KC; Shaffer CA; Tyson JJ; Watson LT
    Syst Biol (Stevenage); 2006 Jan; 153(1):13-21. PubMed ID: 16983831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Centrosome duplication: suspending a license by phosphorylating a template.
    Tanaka K
    Curr Biol; 2014 Jul; 24(14):R651-R653. PubMed ID: 25050963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitotic Exit Function of Polo-like Kinase Cdc5 Is Dependent on Sequential Activation by Cdk1.
    Rodriguez-Rodriguez JA; Moyano Y; Játiva S; Queralt E
    Cell Rep; 2016 May; 15(9):2050-62. PubMed ID: 27210759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Spo12 protein of Saccharomyces cerevisiae: a regulator of mitotic exit whose cell cycle-dependent degradation is mediated by the anaphase-promoting complex.
    Shah R; Jensen S; Frenz LM; Johnson AL; Johnston LH
    Genetics; 2001 Nov; 159(3):965-80. PubMed ID: 11729145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of mitotic events by the Cdc42 GTPase, the Clb2 cyclin and a member of the PAK kinase family.
    Tjandra H; Compton J; Kellogg D
    Curr Biol; 1998 Sep; 8(18):991-1000. PubMed ID: 9740799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mitotic exit network Mob1p-Dbf2p kinase complex localizes to the nucleus and regulates passenger protein localization.
    Stoepel J; Ottey MA; Kurischko C; Hieter P; Luca FC
    Mol Biol Cell; 2005 Dec; 16(12):5465-79. PubMed ID: 16176976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel function of Saccharomyces cerevisiae CDC5 in cytokinesis.
    Song S; Lee KS
    J Cell Biol; 2001 Feb; 152(3):451-69. PubMed ID: 11157974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced kinase activity of polo kinase Cdc5 affects chromosome stability and DNA damage response in S. cerevisiae.
    Rawal CC; Riccardo S; Pesenti C; Ferrari M; Marini F; Pellicioli A
    Cell Cycle; 2016 Nov; 15(21):2906-2919. PubMed ID: 27565373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitotic exit control: a space and time odyssey.
    Segal M
    Curr Biol; 2011 Oct; 21(20):R857-9. PubMed ID: 22032192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell cycle phosphorylation of mitotic exit network (MEN) proteins.
    Jones MH; Keck JM; Wong CC; Xu T; Yates JR; Winey M
    Cell Cycle; 2011 Oct; 10(20):3435-40. PubMed ID: 22031224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mathematical model of mitotic exit in budding yeast: the role of Polo kinase.
    Hancioglu B; Tyson JJ
    PLoS One; 2012; 7(2):e30810. PubMed ID: 22383977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the Bub2/Bfa1 GAP complex by Cdc5 and cell cycle checkpoints.
    Hu F; Wang Y; Liu D; Li Y; Qin J; Elledge SJ
    Cell; 2001 Nov; 107(5):655-65. PubMed ID: 11733064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The FEAR Before MEN: networks of mitotic exit.
    Dumitrescu TP; Saunders WS
    Cell Cycle; 2002; 1(5):304-7. PubMed ID: 12461288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MEC3, MEC1, and DDC2 are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae.
    Enomoto S; Glowczewski L; Berman J
    Mol Biol Cell; 2002 Aug; 13(8):2626-38. PubMed ID: 12181334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of the mitotic exit network during meiosis.
    Attner MA; Amon A
    Mol Biol Cell; 2012 Aug; 23(16):3122-32. PubMed ID: 22718910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.