These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 23641942)
1. Influence of histidine incorporation on buffer capacity and gene transfection efficiency of HPMA-co-oligolysine brush polymers. Shi J; Schellinger JG; Johnson RN; Choi JL; Chou B; Anghel EL; Pun SH Biomacromolecules; 2013 Jun; 14(6):1961-70. PubMed ID: 23641942 [TBL] [Abstract][Full Text] [Related]
2. Optimization of Tet1 ligand density in HPMA-co-oligolysine copolymers for targeted neuronal gene delivery. Chu DS; Schellinger JG; Bocek MJ; Johnson RN; Pun SH Biomaterials; 2013 Dec; 34(37):9632-7. PubMed ID: 24041424 [TBL] [Abstract][Full Text] [Related]
3. Melittin-grafted HPMA-oligolysine based copolymers for gene delivery. Schellinger JG; Pahang JA; Johnson RN; Chu DS; Sellers DL; Maris DO; Convertine AJ; Stayton PS; Horner PJ; Pun SH Biomaterials; 2013 Mar; 34(9):2318-26. PubMed ID: 23261217 [TBL] [Abstract][Full Text] [Related]
4. Reducible HPMA-co-oligolysine copolymers for nucleic acid delivery. Shi J; Johnson RN; Schellinger JG; Carlson PM; Pun SH Int J Pharm; 2012 May; 427(1):113-22. PubMed ID: 21893178 [TBL] [Abstract][Full Text] [Related]
5. Effect of polyplex morphology on cellular uptake, intracellular trafficking, and transgene expression. Shi J; Choi JL; Chou B; Johnson RN; Schellinger JG; Pun SH ACS Nano; 2013 Dec; 7(12):10612-20. PubMed ID: 24195594 [TBL] [Abstract][Full Text] [Related]
6. Poly-L-Lysine-Poly[HPMA] Block Copolymers Obtained by RAFT Polymerization as Polyplex-Transfection Reagents with Minimal Toxicity. Tappertzhofen K; Weiser F; Montermann E; Reske-Kunz A; Bros M; Zentel R Macromol Biosci; 2015 Aug; 15(8):1159-73. PubMed ID: 25974845 [TBL] [Abstract][Full Text] [Related]
7. Assessment of cholesterol-derived ionic copolymers as potential vectors for gene delivery. Sevimli S; Sagnella S; Kavallaris M; Bulmus V; Davis TP Biomacromolecules; 2013 Nov; 14(11):4135-49. PubMed ID: 24125032 [TBL] [Abstract][Full Text] [Related]
8. Optimization of brush-like cationic copolymers for nonviral gene delivery. Wei H; Pahang JA; Pun SH Biomacromolecules; 2013 Jan; 14(1):275-84. PubMed ID: 23240866 [TBL] [Abstract][Full Text] [Related]
9. Tuning the buffering capacity of polyethylenimine with glycerol molecules for efficient gene delivery: staying in or out of the endosomes. Singh B; Maharjan S; Park TE; Jiang T; Kang SK; Choi YJ; Cho CS Macromol Biosci; 2015 May; 15(5):622-35. PubMed ID: 25581293 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and characterization of biodegradable HPMA-oligolysine copolymers for improved gene delivery. Burke RS; Pun SH Bioconjug Chem; 2010 Jan; 21(1):140-50. PubMed ID: 19968270 [TBL] [Abstract][Full Text] [Related]
11. Branched co-polymers of histidine and lysine are efficient carriers of plasmids. Chen QR; Zhang L; Stass SA; Mixson AJ Nucleic Acids Res; 2001 Mar; 29(6):1334-40. PubMed ID: 11239000 [TBL] [Abstract][Full Text] [Related]
12. Galactosylated N-2-hydroxypropyl methacrylamide-b-N-3-guanidinopropyl methacrylamide block copolymers as hepatocyte-targeting gene carriers. Qin Z; Liu W; Li L; Guo L; Yao C; Li X Bioconjug Chem; 2011 Aug; 22(8):1503-12. PubMed ID: 21688826 [TBL] [Abstract][Full Text] [Related]
13. Comparative study of guanidine-based and lysine-based brush copolymers for plasmid delivery. Carlson PM; Schellinger JG; Pahang JA; Johnson RN; Pun SH Biomater Sci; 2013 Jul; 1(7):736-744. PubMed ID: 23750319 [TBL] [Abstract][Full Text] [Related]
15. DNA delivery systems based on complexes of DNA with synthetic polycations and their copolymers. Oupický D; Konák C; Ulbrich K; Wolfert MA; Seymour LW J Control Release; 2000 Mar; 65(1-2):149-71. PubMed ID: 10699278 [TBL] [Abstract][Full Text] [Related]
16. Improved gene delivery to K-562 leukemia cells by lipoic acid modified block copolymer micelles. Richter F; Mapfumo P; Martin L; Solomun JI; Hausig F; Frietsch JJ; Ernst T; Hoeppener S; Brendel JC; Traeger A J Nanobiotechnology; 2021 Mar; 19(1):70. PubMed ID: 33676500 [TBL] [Abstract][Full Text] [Related]
17. P(HPMA)-block-P(LA) copolymers in paclitaxel formulations: polylactide stereochemistry controls micellization, cellular uptake kinetics, intracellular localization and drug efficiency. Barz M; Armiñán A; Canal F; Wolf F; Koynov K; Frey H; Zentel R; Vicent MJ J Control Release; 2012 Oct; 163(1):63-74. PubMed ID: 22613881 [TBL] [Abstract][Full Text] [Related]
18. Bioreducible Poly-L-Lysine-Poly[HPMA] Block Copolymers Obtained by RAFT-Polymerization as Efficient Polyplex-Transfection Reagents. Tappertzhofen K; Beck S; Montermann E; Huesmann D; Barz M; Koynov K; Bros M; Zentel R Macromol Biosci; 2016 Jan; 16(1):106-20. PubMed ID: 26222986 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and Evaluation of Chloroquine-Containing DMAEMA Copolymers as Efficient Anti-miRNA Delivery Vectors with Improved Endosomal Escape and Antimigratory Activity in Cancer Cells. Xie Y; Yu F; Tang W; Alade BO; Peng ZH; Wang Y; Li J; Oupický D Macromol Biosci; 2018 Jan; 18(1):. PubMed ID: 28776937 [TBL] [Abstract][Full Text] [Related]
20. Investigating the effects of block versus statistical glycopolycations containing primary and tertiary amines for plasmid DNA delivery. Sprouse D; Reineke TM Biomacromolecules; 2014 Jul; 15(7):2616-28. PubMed ID: 24901035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]