These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 23642)

  • 1. [Sedimentation rate of erythrocytes as an indicator for phase transitions in the membrane].
    Beutel U; Glaser R
    Acta Biol Med Ger; 1977; 36(5-6):921-4. PubMed ID: 23642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Temperature dependence of the sedimentation velocity of human erythrocytes].
    Beutel U
    Acta Biol Med Ger; 1976; 35(10):1393-7. PubMed ID: 1020570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of procaine and cholesterol on the temperature dependent sedimentation behaviour of individual human erythrocytes.
    Herrmann A; Glaser R
    Acta Biol Med Ger; 1981; 40(6):873-6. PubMed ID: 7324712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electric potential profile across the erythrocyte membrane.
    Heinrich R; Gaestel M; Glaser R
    J Theor Biol; 1982 May; 96(2):211-31. PubMed ID: 7121027
    [No Abstract]   [Full Text] [Related]  

  • 5. Stabilization of erythrocyte shape by a chemical increase in membrane shear stiffness.
    Haest CW; Fischer TM; Plasa G; Deuticke B
    Blood Cells; 1980; 6(3):539-53. PubMed ID: 7397401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural transitions of the erythrocyte membrane: an ESR approach.
    Herrmann A; Arnold K; Lassmann G; Glaser R
    Acta Biol Med Ger; 1982; 41(4):289-98. PubMed ID: 7124247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of thermotropic structural transitions of the erythrocyte membrane: a biochemical and electron-paramagnetic resonance approach.
    Minetti M; Ceccarini M; Di Stasi AM
    J Cell Biochem; 1984; 25(2):73-86. PubMed ID: 6090482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sphingomyelin phase transition in the sheep erythrocyte membrane.
    Borochov H; Shinitzky M; Barenholz Y
    Cell Biophys; 1979 Sep; 1(3):219-28. PubMed ID: 95179
    [No Abstract]   [Full Text] [Related]  

  • 9. Chloride in the human erythrocyte: distribution and transport between cellular and extracellular fluids and structural features of the cell membrane.
    Dalmark M
    Prog Biophys Mol Biol; 1976; 31(2):145-64. PubMed ID: 10601
    [No Abstract]   [Full Text] [Related]  

  • 10. [The effect of chlorine diffusion potential on electrophoretic mobility and erythrocyte sedimentation in diluted suspensions].
    Balmukhanov B; Basenova A
    Biofizika; 1994; 39(4):686-90. PubMed ID: 7981276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computation of the erythrocyte cell membrane parameters from electrophoretical and biochemical data: stern-like electrochemical model of the cell membrane.
    Dołowy K; Godlewski Z
    J Theor Biol; 1980 Jun; 84(4):709-23. PubMed ID: 7431949
    [No Abstract]   [Full Text] [Related]  

  • 12. [Temperature transitions of spectrin in solution and in erythrocyte membranes].
    Kozlova NM; Slobozhanina EI; Vorobeĭ AV; Chernitskiĭ EA
    Biofizika; 1979; 24(6):1111-3. PubMed ID: 508833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of erythrocyte membrane and its transport functions.
    Ballas SK; Krasnow SH
    Ann Clin Lab Sci; 1980; 10(3):209-19. PubMed ID: 6249177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The red cell: a primer.
    Eaton JW
    Prog Clin Biol Res; 1981; 56():1-4. PubMed ID: 7330005
    [No Abstract]   [Full Text] [Related]  

  • 15. [Biophysical changes in the erythrocyte membrane in diabetes mellitus].
    Otsuji S; Kamada T
    Rinsho Byori; 1982 Aug; 30(8):888-97. PubMed ID: 6757493
    [No Abstract]   [Full Text] [Related]  

  • 16. Erythrocyte membranes undergo cooperative, pH-sensitive state transitions in the physiological temperature range: evidence from Raman spectroscopy.
    Verma SP; Wallach DF
    Proc Natl Acad Sci U S A; 1976 Oct; 73(10):3558-61. PubMed ID: 10571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical conductance characteristics of some human erythrocyte membranes.
    Talekar SV; Bakore PV; Talekar VL
    Phys Med Biol; 1976 Nov; 21(6):989-92. PubMed ID: 1019241
    [No Abstract]   [Full Text] [Related]  

  • 18. Deformation of erythrocytes and aggregates during sedimentation under microgravity.
    Singh M; Middelberg J; Rath HJ
    Microgravity Sci Technol; 1995 Dec; 8(4):256-60. PubMed ID: 11541848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertical displacement of membrane proteins mediated by changes in microviscosity.
    Borochov H; Shinitzky M
    Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4526-30. PubMed ID: 1070002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. V irus and lectin agglutination of erythrocytes: spin label study of membrane lipid-protein interactions.
    Lyles DS; Landsberger FR
    Proc Natl Acad Sci U S A; 1976 Oct; 73(10):3497-501. PubMed ID: 185616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.