These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 23642000)

  • 1. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites.
    Lee W; Han JW; Chen Y; Cai Z; Yildiz B
    J Am Chem Soc; 2013 May; 135(21):7909-25. PubMed ID: 23642000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical Polarization Dependence of the Elastic and Electrostatic Driving Forces to Aliovalent Dopant Segregation on LaMnO
    Kim D; Bliem R; Hess F; Gallet JJ; Yildiz B
    J Am Chem Soc; 2020 Feb; 142(7):3548-3563. PubMed ID: 31935081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of Cation Segregation in (La,Sr)CoO
    Koo JY; Kwon H; Ahn M; Choi M; Son JW; Han JW; Lee W
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8057-8065. PubMed ID: 29443491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved electrochemical stability at the surface of La(0.8)Sr(0.2)CoO3 achieved by surface chemical modification.
    Tsvetkov N; Lu Q; Yildiz B
    Faraday Discuss; 2015; 182():257-69. PubMed ID: 26227310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions.
    Feng Z; Hong WT; Fong DD; Lee YL; Yacoby Y; Morgan D; Shao-Horn Y
    Acc Chem Res; 2016 May; 49(5):966-73. PubMed ID: 27149528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying the Origin of the Limiting Process in a Double Perovskite PrBa
    Anjum U; Khan TS; Agarwal M; Haider MA
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25243-25253. PubMed ID: 31260249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface electronic structure transitions at high temperature on perovskite oxides: the case of strained La0.8Sr0.2CoO3 thin films.
    Cai Z; Kuru Y; Han JW; Chen Y; Yildiz B
    J Am Chem Soc; 2011 Nov; 133(44):17696-704. PubMed ID: 21913726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hf Deposition Stabilizes the Surface Chemistry of Perovskite Manganite Oxide.
    Bliem R; Kim D; Wang J; Crumlin EJ; Yildiz B
    J Phys Chem C Nanomater Interfaces; 2021 Feb; 125(6):3346-3354. PubMed ID: 33815648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precipitation of dopants on acceptor-doped LaMnO
    Hess F; Yildiz B
    J Chem Phys; 2021 Feb; 154(6):064702. PubMed ID: 33588549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and migration of oxygen vacancies in La(1-x)Sr(x)Co(1-y)Fe(y)O(3-δ) perovskites: insight from ab initio calculations and comparison with Ba(1-x)Sr(x)Co(1-y)Fe(y)O(3-δ).
    Mastrikov YA; Merkle R; Kotomin EA; Kuklja MM; Maier J
    Phys Chem Chem Phys; 2013 Jan; 15(3):911-8. PubMed ID: 23202751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring routes to tailor the physical and chemical properties of oxides via doping: an STM study.
    Nilius N
    J Phys Condens Matter; 2015 Aug; 27(30):303001. PubMed ID: 26151239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational investigation of O2 reduction and diffusion on 25% Sr-doped LaMnO3 cathodes in solid oxide fuel cells.
    Chen HT; Raghunath P; Lin MC
    Langmuir; 2011 Jun; 27(11):6787-93. PubMed ID: 21563810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational study of the electronic properties, ionic conduction, and thermal expansion of Sm
    Olsson E; Aparicio-Anglès X; de Leeuw NH
    Phys Chem Chem Phys; 2017 May; 19(21):13960-13969. PubMed ID: 28513672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational modelling study of oxygen vacancies at LaCoO3 perovskite surfaces.
    Khan S; Oldman RJ; Corà F; Catlow CR; French SA; Axon SA
    Phys Chem Chem Phys; 2006 Nov; 8(44):5207-22. PubMed ID: 17203145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into in situ surface reconstruction in cobalt perovskite oxides for enhanced catalytic activity.
    Jin Y; Cheng H; Wang Q; Liu X; Mo S; Zhou B; Peng Y; Wang Y; Si W; Li J
    J Hazard Mater; 2024 Jul; 476():135113. PubMed ID: 38996683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activating Nonreducible Oxides via Doping.
    Nilius N; Freund HJ
    Acc Chem Res; 2015 May; 48(5):1532-9. PubMed ID: 25894859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-performance cathode for the next generation of solid-oxide fuel cells.
    Shao Z; Haile SM
    Nature; 2004 Sep; 431(7005):170-3. PubMed ID: 15356627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of chemical interactions between stabilized zirconia and perovskites.
    Stochniol G; Broel S; Naoumidis A; Nickel H
    Anal Bioanal Chem; 1996 Jun; 355(5-6):697-700. PubMed ID: 15045345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cation interdiffusion model for enhanced oxygen kinetics at oxide heterostructure interfaces.
    Gadre MJ; Lee YL; Morgan D
    Phys Chem Chem Phys; 2012 Feb; 14(8):2606-16. PubMed ID: 22270079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface.
    Tsvetkov N; Lu Q; Sun L; Crumlin EJ; Yildiz B
    Nat Mater; 2016 Sep; 15(9):1010-6. PubMed ID: 27295099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.