These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 23642253)

  • 1. Graphical identification of cancer-associated gene subnetworks based on small proteomics data sets.
    Mezhoud K
    OMICS; 2013 Jul; 17(7):393-7. PubMed ID: 23642253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional genomics and proteomics in the clinical neurosciences: data mining and bioinformatics.
    Phan JH; Quo CF; Wang MD
    Prog Brain Res; 2006; 158():83-108. PubMed ID: 17027692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic protein interaction network construction and applications.
    Wang J; Peng X; Peng W; Wu FX
    Proteomics; 2014 Mar; 14(4-5):338-52. PubMed ID: 24339054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network generation enhances interpretation of proteomics data sets by a combination of two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry.
    Wang X; Zhang A; Sun H; Wu G; Sun W; Yan G
    Analyst; 2012 Oct; 137(20):4703-11. PubMed ID: 22950079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting disease genes based on semi-supervised learning and protein-protein interaction networks.
    Nguyen TP; Ho TB
    Artif Intell Med; 2012 Jan; 54(1):63-71. PubMed ID: 22000346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Molecular Signature, Potential Biomarkers, and Molecular Pathways Associated with Membranous Nephropathy Based on Protein Protein Interactions.
    Taherkhani A; Kalantari S; Nafar M
    Rev Invest Clin; 2018; 70(4):184-191. PubMed ID: 30067725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing protein-protein interaction networks.
    Koh GC; Porras P; Aranda B; Hermjakob H; Orchard SE
    J Proteome Res; 2012 Apr; 11(4):2014-31. PubMed ID: 22385417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transforming omics data into context: bioinformatics on genomics and proteomics raw data.
    Perco P; Rapberger R; Siehs C; Lukas A; Oberbauer R; Mayer G; Mayer B
    Electrophoresis; 2006 Jul; 27(13):2659-75. PubMed ID: 16739231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From proteome lists to biological impact--tools and strategies for the analysis of large MS data sets.
    Malik R; Dulla K; Nigg EA; Körner R
    Proteomics; 2010 Mar; 10(6):1270-83. PubMed ID: 20077408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A proteome resource of ovarian cancer ascites: integrated proteomic and bioinformatic analyses to identify putative biomarkers.
    Gortzak-Uzan L; Ignatchenko A; Evangelou AI; Agochiya M; Brown KA; St Onge P; Kireeva I; Schmitt-Ulms G; Brown TJ; Murphy J; Rosen B; Shaw P; Jurisica I; Kislinger T
    J Proteome Res; 2008 Jan; 7(1):339-51. PubMed ID: 18076136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Networks in proteomics analysis of cancer.
    Goh WW; Wong L
    Curr Opin Biotechnol; 2013 Dec; 24(6):1122-8. PubMed ID: 23481377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management.
    Maruschke M; Reuter D; Koczan D; Hakenberg OW; Thiesen HJ
    BJU Int; 2011 Jul; 108(2 Pt 2):E29-35. PubMed ID: 21435154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FunRich proteomics software analysis, let the fun begin!
    Benito-Martin A; Peinado H
    Proteomics; 2015 Aug; 15(15):2555-6. PubMed ID: 26149235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinformatics and data mining in proteomics.
    Haoudi A; Bensmail H
    Expert Rev Proteomics; 2006 Jun; 3(3):333-43. PubMed ID: 16771705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinformatics of the urinary proteome.
    Parnell LD; Schueller CM
    Methods Mol Biol; 2010; 641():101-22. PubMed ID: 20407944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-depth proteomics of ovarian cancer ascites: combining shotgun proteomics and selected reaction monitoring mass spectrometry.
    Elschenbroich S; Ignatchenko V; Clarke B; Kalloger SE; Boutros PC; Gramolini AO; Shaw P; Jurisica I; Kislinger T
    J Proteome Res; 2011 May; 10(5):2286-99. PubMed ID: 21491939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elective affinities--bioinformatic analysis of proteomic mass spectrometry data.
    Li X; Pizarro A; Grosser T
    Arch Physiol Biochem; 2009 Dec; 115(5):311-9. PubMed ID: 19911947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CHOMPER: a bioinformatic tool for rapid validation of tandem mass spectrometry search results associated with high-throughput proteomic strategies.
    Eddes JS; Kapp EA; Frecklington DF; Connolly LM; Layton MJ; Moritz RL; Simpson RJ
    Proteomics; 2002 Sep; 2(9):1097-103. PubMed ID: 12362328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated analysis of transcriptomic and proteomic data of Desulfovibrio vulgaris: zero-inflated Poisson regression models to predict abundance of undetected proteins.
    Nie L; Wu G; Brockman FJ; Zhang W
    Bioinformatics; 2006 Jul; 22(13):1641-7. PubMed ID: 16675466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GARBAN II: an integrative framework for extracting biological information from proteomic and genomic data.
    Segura V; Podhorski A; Guruceaga E; Sevilla JL; Corrales FJ; Rubio A
    Proteomics; 2006 Apr; 6 Suppl 1():S12-5. PubMed ID: 16511812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.