BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23642534)

  • 1. The margination propensity of ellipsoidal micro/nanoparticles to the endothelium in human blood flow.
    Thompson AJ; Mastria EM; Eniola-Adefeso O
    Biomaterials; 2013 Jul; 34(23):5863-71. PubMed ID: 23642534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Margination propensity of vascular-targeted spheres from blood flow in a microfluidic model of human microvessels.
    Namdee K; Thompson AJ; Charoenphol P; Eniola-Adefeso O
    Langmuir; 2013 Feb; 29(8):2530-5. PubMed ID: 23363293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting therapeutics to the vascular wall in atherosclerosis--carrier size matters.
    Charoenphol P; Mocherla S; Bouis D; Namdee K; Pinsky DJ; Eniola-Adefeso O
    Atherosclerosis; 2011 Aug; 217(2):364-70. PubMed ID: 21601207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo evaluation of vascular-targeted spheroidal microparticles for imaging and drug delivery application in atherosclerosis.
    Namdee K; Thompson AJ; Golinski A; Mocherla S; Bouis D; Eniola-Adefeso O
    Atherosclerosis; 2014 Nov; 237(1):279-86. PubMed ID: 25286447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle-cell dynamics in human blood flow: implications for vascular-targeted drug delivery.
    Charoenphol P; Onyskiw PJ; Carrasco-Teja M; Eniola-Adefeso O
    J Biomech; 2012 Nov; 45(16):2822-8. PubMed ID: 23010218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microparticle shape effects on margination, near-wall dynamics and adhesion in a three-dimensional simulation of red blood cell suspension.
    Vahidkhah K; Bagchi P
    Soft Matter; 2015 Mar; 11(11):2097-109. PubMed ID: 25601616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dense nanoparticles exhibit enhanced vascular wall targeting over neutrally buoyant nanoparticles in human blood flow.
    Thompson AJ; Eniola-Adefeso O
    Acta Biomater; 2015 Jul; 21():99-108. PubMed ID: 25870170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of variation in hemorheology between human and animal blood on the binding efficacy of vascular-targeted carriers.
    Namdee K; Carrasco-Teja M; Fish MB; Charoenphol P; Eniola-Adefeso O
    Sci Rep; 2015 Jun; 5():11631. PubMed ID: 26113000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale.
    Cooley M; Sarode A; Hoore M; Fedosov DA; Mitragotri S; Sen Gupta A
    Nanoscale; 2018 Aug; 10(32):15350-15364. PubMed ID: 30080212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear rate dependent margination of sphere-like, oblate-like and prolate-like micro-particles within blood flow.
    Ye H; Shen Z; Li Y
    Soft Matter; 2018 Sep; 14(36):7401-7419. PubMed ID: 30187053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of bio-mimetic particles with enhanced vascular interaction.
    Lee SY; Ferrari M; Decuzzi P
    J Biomech; 2009 Aug; 42(12):1885-90. PubMed ID: 19523635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential role of size and hemodynamics in the efficacy of vascular-targeted spherical drug carriers.
    Charoenphol P; Huang RB; Eniola-Adefeso O
    Biomaterials; 2010 Feb; 31(6):1392-402. PubMed ID: 19954839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Margination of micro- and nano-particles in blood flow and its effect on drug delivery.
    Müller K; Fedosov DA; Gompper G
    Sci Rep; 2014 May; 4():4871. PubMed ID: 24786000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascular-targeted particle binding efficacy in the presence of rigid red blood cells: Implications for performance in diseased blood.
    Gutierrez M; Ojeda LS; Eniola-Adefeso O
    Biomicrofluidics; 2018 Jul; 12(4):042217. PubMed ID: 30018696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Tracking of Particles and Quantification of Margination in Blood Flow.
    Carboni EJ; Bognet BH; Bouchillon GM; Kadilak AL; Shor LM; Ward MD; Ma AWK
    Biophys J; 2016 Oct; 111(7):1487-1495. PubMed ID: 27705771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Red blood cells affect the margination of microparticles in synthetic microcapillaries and intravital microcirculation as a function of their size and shape.
    D'Apolito R; Tomaiuolo G; Taraballi F; Minardi S; Kirui D; Liu X; Cevenini A; Palomba R; Ferrari M; Salvatore F; Tasciotti E; Guido S
    J Control Release; 2015 Nov; 217():263-72. PubMed ID: 26381900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unique size and shape-dependent uptake behaviors of non-spherical nanoparticles by endothelial cells due to a shearing flow.
    Jurney P; Agarwal R; Singh V; Choi D; Roy K; Sreenivasan SV; Shi L
    J Control Release; 2017 Jan; 245():170-176. PubMed ID: 27916535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle margination and its implications on intravenous anticancer drug delivery.
    Carboni E; Tschudi K; Nam J; Lu X; Ma AW
    AAPS PharmSciTech; 2014 Jun; 15(3):762-71. PubMed ID: 24687242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding particle margination in blood flow - A step toward optimized drug delivery systems.
    Müller K; Fedosov DA; Gompper G
    Med Eng Phys; 2016 Jan; 38(1):2-10. PubMed ID: 26343228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring deformable particles in vascular-targeted drug delivery: Softer is only sometimes better.
    Fish MB; Fromen CA; Lopez-Cazares G; Golinski AW; Scott TF; Adili R; Holinstat M; Eniola-Adefeso O
    Biomaterials; 2017 Apr; 124():169-179. PubMed ID: 28209527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.