These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 23642660)

  • 1. Effect of wheelchair mass, tire type and tire pressure on physical strain and wheelchair propulsion technique.
    de Groot S; Vegter RJ; van der Woude LH
    Med Eng Phys; 2013 Oct; 35(10):1476-82. PubMed ID: 23642660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical efficiency and propulsion technique after 7 weeks of low-intensity wheelchair training.
    de Groot S; de Bruin M; Noomen SP; van der Woude LH
    Clin Biomech (Bristol); 2008 May; 23(4):434-41. PubMed ID: 18077065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of workload setting on propulsion technique in handrim wheelchair propulsion.
    van Drongelen S; Arnet U; Veeger DH; van der Woude LH
    Med Eng Phys; 2013 Mar; 35(3):283-8. PubMed ID: 22910103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of handrim velocity on mechanical efficiency in wheelchair propulsion.
    Veeger HE; van der Woude LH; Rozendal RH
    Med Sci Sports Exerc; 1992 Jan; 24(1):100-7. PubMed ID: 1548983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiated perceived exertion and self-regulated wheelchair exercise.
    Paulson TA; Bishop NC; Eston RG; Goosey-Tolfrey VL
    Arch Phys Med Rehabil; 2013 Nov; 94(11):2269-76. PubMed ID: 23562415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rolling resistance and propulsion efficiency of manual and power-assisted wheelchairs.
    Pavlidou E; Kloosterman MG; Buurke JH; Rietman JS; Janssen TW
    Med Eng Phys; 2015 Nov; 37(11):1105-10. PubMed ID: 26376474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical efficiency and wheelchair performance during and after spinal cord injury rehabilitation.
    de Groot S; Dallmeijer AJ; van Asbeck FW; Post MW; Bussmann JB; van der Woude L
    Int J Sports Med; 2007 Oct; 28(10):880-6. PubMed ID: 17436205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wheelchair propulsion efficiency: movement pattern adaptations to speed changes.
    Vanlandewijck YC; Spaepen AJ; Lysens RJ
    Med Sci Sports Exerc; 1994 Nov; 26(11):1373-81. PubMed ID: 7837958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of varied tempo music on wheelchair mechanical efficiency following 3-week practice.
    Goosey-Tolfrey VL; West M; Lenton JP; Tolfrey K
    Int J Sports Med; 2011 Feb; 32(2):126-31. PubMed ID: 21165800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of task complexity on mechanical efficiency and propulsion technique during learning of hand rim wheelchair propulsion.
    de Groot S; Veeger HE; Hollander AP; van der Woude LH
    Med Eng Phys; 2005 Jan; 27(1):41-9. PubMed ID: 15604003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new procedure to determine external power output during handrim wheelchair propulsion on a roller ergometer: a reliability study.
    Theisen D; Francaux M; Fayt A; Sturbois X
    Int J Sports Med; 1996 Nov; 17(8):564-71. PubMed ID: 8973976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computerized wheelchair ergometer. Results of a comparison study.
    Veeger HE; van der Woude LH; Rozendal RH
    Scand J Rehabil Med; 1992; 24(1):17-23. PubMed ID: 1604258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sex differences in wheelchair propulsion biomechanics and mechanical efficiency in novice young able-bodied adults.
    Chaikhot D; Taylor MJD; Hettinga FJ
    Eur J Sport Sci; 2018 Jun; 18(5):650-658. PubMed ID: 29533156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variability in bimanual wheelchair propulsion: consistency of two instrumented wheels during handrim wheelchair propulsion on a motor driven treadmill.
    Vegter RJ; Lamoth CJ; de Groot S; Veeger DH; van der Woude LH
    J Neuroeng Rehabil; 2013 Jan; 10():9. PubMed ID: 23360756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of wheel and hand-rim size on submaximal propulsion in wheelchair athletes.
    Mason BS; Van Der Woude LH; Tolfrey K; Lenton JP; Goosey-Tolfrey VL
    Med Sci Sports Exerc; 2012 Jan; 44(1):126-34. PubMed ID: 21701409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wheelchair propulsion: functional ability dependent factors in wheelchair basketball players.
    Vanlandewijck YC; Spaepen AJ; Lysens RJ
    Scand J Rehabil Med; 1994 Mar; 26(1):37-48. PubMed ID: 8023084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arm crank vs handrim wheelchair propulsion: metabolic and cardiopulmonary responses.
    Smith PA; Glaser RM; Petrofsky JS; Underwood PD; Smith GB; Richard JJ
    Arch Phys Med Rehabil; 1983 Jun; 64(6):249-54. PubMed ID: 6860094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of experience on the energy cost of wheelchair propulsion.
    Croft L; Lenton J; Tolfrey K; Goosey-Tolfrey V
    Eur J Phys Rehabil Med; 2013 Dec; 49(6):865-73. PubMed ID: 23558701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency of wheelchair propulsion and effects of strategy.
    Lenton JP; Fowler N; van der Woude L; Goosey-Tolfrey VL
    Int J Sports Med; 2008 May; 29(5):384-9. PubMed ID: 17879885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Power output and metabolic cost of synchronous and asynchronous submaximal and peak level hand cycling on a motor driven treadmill in able-bodied male subjects.
    van der Woude LH; Horstman A; Faas P; Mechielsen S; Bafghi HA; de Koning JJ
    Med Eng Phys; 2008 Jun; 30(5):574-80. PubMed ID: 17709272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.