These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 23642735)

  • 1. Ethyl-eicosapentaenoic acid ameliorates the clinical course of experimental allergic encephalomyelitis induced in dark agouti rats.
    Salvati S; Di Biase A; Attorri L; Di Benedetto R; Sanchez M; Lorenzini L; Alessandri M; Calzà L
    J Nutr Biochem; 2013 Sep; 24(9):1645-54. PubMed ID: 23642735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eicosapentaenoic acid pre-treatment reduces biochemical changes induced in total brain and myelin of weanling Wistar rats by cuprizone feeding.
    Di Biase A; Salvati S; Di Benedetto R; Attorri L; Martinelli A; Malchiodi F
    Prostaglandins Leukot Essent Fatty Acids; 2014 Apr; 90(4):99-104. PubMed ID: 24360206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute treatment with valproic acid and l-thyroxine ameliorates clinical signs of experimental autoimmune encephalomyelitis and prevents brain pathology in DA rats.
    Castelo-Branco G; Stridh P; Guerreiro-Cacais AO; Adzemovic MZ; Falcão AM; Marta M; Berglund R; Gillett A; Hamza KH; Lassmann H; Hermanson O; Jagodic M
    Neurobiol Dis; 2014 Nov; 71():220-33. PubMed ID: 25149263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of regulatory T cells in the experimental autoimmune encephalomyelitis-preventive effect of dendritic cells expressing myelin oligodendrocyte glycoprotein plus TRAIL.
    Hirata S; Matsuyoshi H; Fukuma D; Kurisaki A; Uemura Y; Nishimura Y; Senju S
    J Immunol; 2007 Jan; 178(2):918-25. PubMed ID: 17202353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related changes in spleen of Dark Agouti rats immunized for experimental autoimmune encephalomyelitis.
    Djikić J; Nacka-Aleksić M; Pilipović I; Kosec D; Arsenović-Ranin N; Stojić-Vukanić Z; Dimitrijević M; Leposavić G
    J Neuroimmunol; 2015 Jan; 278():123-35. PubMed ID: 25595261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High interleukin-10 expression within the central nervous system may be important for initiation of recovery of Dark Agouti rats from experimental autoimmune encephalomyelitis.
    Blaževski J; Petković F; Momčilović M; Jevtic B; Miljković D; Mostarica Stojković M
    Immunobiology; 2013 Sep; 218(9):1192-9. PubMed ID: 23664544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Down-regulation of experimental allergic encephalomyelitis in DA rats by tiazofurin.
    Stosic-Grujicic S; Savic-Radojevic A; Maksimovic-Ivanic D; Markovic M; Bumbasirevic V; Ramic Z; Mostarica-Stojkovic M
    J Neuroimmunol; 2002 Sep; 130(1-2):66-77. PubMed ID: 12225889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunomodulatory effects and improved prognosis of experimental autoimmune encephalomyelitis after O-tetradecanoyl-genistein treatment.
    Castro SB; Junior CO; Alves CC; Dias AT; Alves LL; Mazzoccoli L; Mesquita FP; Figueiredo NS; Juliano MA; Castañon MC; Gameiro J; Almeida MV; Teixeira HC; Ferreira AP
    Int Immunopharmacol; 2012 Feb; 12(2):465-70. PubMed ID: 22245971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fat deficiency in rats during development of the central nervous system and susceptibility to experimental allergic encephalomyelitis.
    Selivonchick DP; Johnston PV
    J Nutr; 1975 Mar; 105(3):288-300. PubMed ID: 1117339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Th3 cells in peripheral tolerance. I. Induction of Foxp3-positive regulatory T cells by Th3 cells derived from TGF-beta T cell-transgenic mice.
    Carrier Y; Yuan J; Kuchroo VK; Weiner HL
    J Immunol; 2007 Jan; 178(1):179-85. PubMed ID: 17182553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of an autoimmune encephalomyelitis mouse model with nonmyeloablative conditioning and syngeneic bone marrow transplantation.
    Meng L; Ouyang J; Zhang H; Wen Y; Chen J; Zhou J
    Restor Neurol Neurosci; 2011; 29(3):177-85. PubMed ID: 21586824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment with rapamycin ameliorates clinical and histological signs of protracted relapsing experimental allergic encephalomyelitis in Dark Agouti rats and induces expansion of peripheral CD4+CD25+Foxp3+ regulatory T cells.
    Donia M; Mangano K; Amoroso A; Mazzarino MC; Imbesi R; Castrogiovanni P; Coco M; Meroni P; Nicoletti F
    J Autoimmun; 2009 Sep; 33(2):135-40. PubMed ID: 19625166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Ras-pathway inhibitor, S-trans-trans-farnesylthiosalicylic acid, suppresses experimental allergic encephalomyelitis.
    Karussis D; Abramsky O; Grigoriadis N; Chapman J; Mizrachi-Koll R; Niv H; Kloog Y
    J Neuroimmunol; 2001 Nov; 120(1-2):1-9. PubMed ID: 11694313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eicosapentaenoic acid (EPA) induces peroxisome proliferator-activated receptors and ameliorates experimental autoimmune encephalomyelitis.
    Unoda K; Doi Y; Nakajima H; Yamane K; Hosokawa T; Ishida S; Kimura F; Hanafusa T
    J Neuroimmunol; 2013 Mar; 256(1-2):7-12. PubMed ID: 23276800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LF 15-0195 treatment protects against central nervous system autoimmunity by favoring the development of Foxp3-expressing regulatory CD4 T cells.
    Duplan V; Beriou G; Heslan JM; Bruand C; Dutartre P; Mars LT; Liblau RS; Cuturi MC; Saoudi A
    J Immunol; 2006 Jan; 176(2):839-47. PubMed ID: 16393967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ellagic acid protects from myelin-associated sphingolipid loss in experimental autoimmune encephalomyelitis.
    Busto R; Serna J; Perianes-Cachero A; Quintana-Portillo R; García-Seisdedos D; Canfrán-Duque A; Paino CL; Lerma M; Casado ME; Martín-Hidalgo A; Arilla-Ferreiro E; Lasunción MA; Pastor Ó
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Sep; 1863(9):958-967. PubMed ID: 29793057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronological changes of CD4(+) and CD8(+) T cell subsets in the experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis.
    Sonobe Y; Jin S; Wang J; Kawanokuchi J; Takeuchi H; Mizuno T; Suzumura A
    Tohoku J Exp Med; 2007 Dec; 213(4):329-39. PubMed ID: 18075237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depletion of CD4+ CD25+ regulatory T cells confers susceptibility to experimental autoimmune encephalomyelitis (EAE) in GM-CSF-deficient Csf2-/- mice.
    Ghosh D; Curtis AD; Wilkinson DS; Mannie MD
    J Leukoc Biol; 2016 Oct; 100(4):747-760. PubMed ID: 27256565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dendritic cells, engineered to overexpress 25-hydroxyvitamin D 1α-hydroxylase and pulsed with a myelin antigen, provide myelin-specific suppression of ongoing experimental allergic encephalomyelitis.
    Li CH; Zhang J; Baylink DJ; Wang X; Goparaju NB; Xu Y; Wasnik S; Cheng Y; Berumen EC; Qin X; Lau KW; Tang X
    FASEB J; 2017 Jul; 31(7):2996-3006. PubMed ID: 28363955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The protective effects of omega-6 fatty acids in experimental autoimmune encephalomyelitis (EAE) in relation to transforming growth factor-beta 1 (TGF-beta1) up-regulation and increased prostaglandin E2 (PGE2) production.
    Harbige LS; Layward L; Morris-Downes MM; Dumonde DC; Amor S
    Clin Exp Immunol; 2000 Dec; 122(3):445-52. PubMed ID: 11122253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.