BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 23643044)

  • 1. Recovery of absorption spectra from Fourier transform infrared (FT-IR) microspectroscopic measurements of intact spheres.
    van Dijk T; Mayerich D; Carney PS; Bhargava R
    Appl Spectrosc; 2013 May; 67(5):546-52. PubMed ID: 23643044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimising contributions from scattering in infrared spectra by means of an integrating sphere.
    Dazzi A; Deniset-Besseau A; Lasch P
    Analyst; 2013 Jul; 138(14):4191-201. PubMed ID: 23757480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectric Sphere Clusters as a Model to Understand Infrared Spectroscopic Imaging Data Recorded from Complex Samples.
    Rasskazov IL; Spegazzini N; Carney PS; Bhargava R
    Anal Chem; 2017 Oct; 89(20):10813-10818. PubMed ID: 28895722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary investigations into macroscopic attenuated total reflection-fourier transform infrared imaging of intact spherical domains: spatial resolution and image distortion.
    Everall NJ; Priestnall IM; Clarke F; Jayes L; Poulter G; Coombs D; George MW
    Appl Spectrosc; 2009 Mar; 63(3):313-20. PubMed ID: 19281647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory of mid-infrared absorption microspectroscopy: II. Heterogeneous samples.
    Davis BJ; Carney PS; Bhargava R
    Anal Chem; 2010 May; 82(9):3487-99. PubMed ID: 20392064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating and correcting mie scattering in synchrotron-based microscopic fourier transform infrared spectra by extended multiplicative signal correction.
    Kohler A; Sulé-Suso J; Sockalingum GD; Tobin M; Bahrami F; Yang Y; Pijanka J; Dumas P; Cotte M; van Pittius DG; Parkes G; Martens H
    Appl Spectrosc; 2008 Mar; 62(3):259-66. PubMed ID: 18339231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid, nondestructive estimation of surface polymer layer thickness using attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy and synthetic spectra derived from optical principles.
    Weinstock BA; Guiney LM; Loose C
    Appl Spectrosc; 2012 Nov; 66(11):1311-9. PubMed ID: 23146187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory of infrared microspectroscopy for intact fibers.
    Davis BJ; Carney PS; Bhargava R
    Anal Chem; 2011 Jan; 83(2):525-32. PubMed ID: 21158469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourier transform infrared attenuated total reflection and transmission spectra studied by dispersion analysis.
    MacDonald SA; Bureau B
    Appl Spectrosc; 2003 Mar; 57(3):282-7. PubMed ID: 14658619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application Fourier transform near infrared spectrometer in rapid estimation of soluble solids content of intact citrus fruits.
    Lu HS; Xu HR; Ying YB; Fu XP; Yu HY; Tian HQ
    J Zhejiang Univ Sci B; 2006 Oct; 7(10):794-9. PubMed ID: 16972321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FT-IR, NIR-FT-Raman and gas phase infrared spectra of 3-aminoacetophenone by density functional theory and ab initio Hartree-Fock calculations.
    Subramanian MK; Anbarasan PM; Ilangovan V; Babu SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):59-67. PubMed ID: 18178129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The spectroscopic properties of anticancer drug Apigenin investigated by using DFT calculations, FT-IR, FT-Raman and NMR analysis.
    Mariappan G; Sundaraganesan N; Manoharan S
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep; 95():86-99. PubMed ID: 22617215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments.
    Harrison JP; Ojeda JJ; Romero-González ME
    Sci Total Environ; 2012 Feb; 416():455-63. PubMed ID: 22221871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonant Mie scattering in infrared spectroscopy of biological materials--understanding the 'dispersion artefact'.
    Bassan P; Byrne HJ; Bonnier F; Lee J; Dumas P; Gardner P
    Analyst; 2009 Aug; 134(8):1586-93. PubMed ID: 20448924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FT-IR, FT-Raman spectra and quantum chemical calculations of 3,4-dimethoxyaniline.
    Sundaraganesan N; Priya M; Meganathan C; Joshua BD; Cornard JP
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jun; 70(1):50-9. PubMed ID: 17765601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative evaluation of bioactivity change of crystalline trypsin during compression by chemoinformatics and 2-D Fourier-transform infrared spectroscopy.
    Otsuka M; Fukui Y; Otsuka K; Ozaki Y
    Analyst; 2006 Oct; 131(10):1116-21. PubMed ID: 17003859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular structure investigation and spectroscopic studies on 2,3-difluorophenylboronic acid: a combined experimental and theoretical analysis.
    Karabacak M; Kose E; Atac A; Ali Cipiloglu M; Kurt M
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():892-908. PubMed ID: 22902933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of absorbance spectra of micrometer-sized biological and inanimate particles.
    Lukacs R; Blümel R; Zimmerman B; Bağcıoğlu M; Kohler A
    Analyst; 2015 May; 140(9):3273-84. PubMed ID: 25797528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of biochemical imaging changes in human pancreatic cancer tissue using Fourier-transform infrared microspectroscopy.
    Chen YJ; Cheng YD; Liu HY; Lin PY; Wang CS
    Chang Gung Med J; 2006; 29(5):518-27. PubMed ID: 17214398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reflection optical two-dimensional Fourier-transform spectroscopy.
    Li H; Moody G; Cundiff ST
    Opt Express; 2013 Jan; 21(2):1687-92. PubMed ID: 23389154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.