These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23643300)

  • 1. Viscoelastic creep induced by repetitive spine flexion and its relationship to dynamic spine stability.
    Howarth SJ; Kingston DC; Brown SH; Graham RB
    J Electromyogr Kinesiol; 2013 Aug; 23(4):794-800. PubMed ID: 23643300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between flexibility and EMG activity pattern of the erector spinae muscles during trunk flexion-extension.
    Hashemirad F; Talebian S; Hatef B; Kahlaee AH
    J Electromyogr Kinesiol; 2009 Oct; 19(5):746-53. PubMed ID: 18400517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreasing the required lumbar extensor moment induces earlier onset of flexion relaxation.
    Zwambag DP; De Carvalho DE; Brown SH
    J Electromyogr Kinesiol; 2016 Oct; 30():38-45. PubMed ID: 27267174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Describing the active region boundary of EMG-assisted biomechanical models of the low back.
    Ning X; Jin S; Mirka GA
    Clin Biomech (Bristol, Avon); 2012 Jun; 27(5):422-7. PubMed ID: 22169592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The time-varying response of the in vivo lumbar spine to dynamic repetitive flexion.
    Parkinson RJ; Beach TA; Callaghan JP
    Clin Biomech (Bristol, Avon); 2004 May; 19(4):330-6. PubMed ID: 15109751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeated spinal flexion modulates the flexion-relaxation phenomenon.
    Dickey JP; McNorton S; Potvin JR
    Clin Biomech (Bristol, Avon); 2003 Nov; 18(9):783-9. PubMed ID: 14527804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying the lumbar flexion-relaxation phenomenon: theory, normative data, and clinical applications.
    Neblett R; Mayer TG; Gatchel RJ; Keeley J; Proctor T; Anagnostis C
    Spine (Phila Pa 1976); 2003 Jul; 28(13):1435-46. PubMed ID: 12838103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is activation of the back muscles impaired by creep or muscle fatigue?
    Sánchez-Zuriaga D; Adams MA; Dolan P
    Spine (Phila Pa 1976); 2010 Mar; 35(5):517-25. PubMed ID: 20147877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Torque and EMG in rotation extension of the torso from pre-rotated and flexed postures.
    Kumar S; Narayan Y
    Clin Biomech (Bristol, Avon); 2006 Nov; 21(9):920-31. PubMed ID: 16782246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of knee angle and individual flexibility on the flexion-relaxation response of the low back musculature.
    Shin G; Shu Y; Li Z; Jiang Z; Mirka G
    J Electromyogr Kinesiol; 2004 Aug; 14(4):485-94. PubMed ID: 15165598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creep and fatigue development in the low back in static flexion.
    Shin G; D'Souza C; Liu YH
    Spine (Phila Pa 1976); 2009 Aug; 34(17):1873-8. PubMed ID: 19644340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of high and low heeled shoes on EMG timing characteristics of the lumbar and hip extensor complex during trunk forward flexion and return task.
    Mika A; Clark BC; Oleksy Ł
    Man Ther; 2013 Dec; 18(6):506-11. PubMed ID: 23632370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexion-relaxation response to cyclic lumbar flexion.
    Olson MW; Li L; Solomonow M
    Clin Biomech (Bristol, Avon); 2004 Oct; 19(8):769-76. PubMed ID: 15342148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normal postural responses preceding shoulder flexion: co-activation or asymmetric activation of transverse abdominis?
    Davarian S; Maroufi N; Ebrahimi E; Parnianpour M; Farahmand F
    J Back Musculoskelet Rehabil; 2014; 27(4):545-51. PubMed ID: 24867902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of creep and recovery on the in vitro biomechanical characteristics of human multi-level thoracolumbar spinal segments.
    Busscher I; van Dieën JH; van der Veen AJ; Kingma I; Meijer GJ; Verkerke GJ; Veldhuizen AG
    Clin Biomech (Bristol, Avon); 2011 Jun; 26(5):438-44. PubMed ID: 21251737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing the local dynamic stability of trunk movements between varsity athletes with and without non-specific low back pain.
    Graham RB; Oikawa LY; Ross GB
    J Biomech; 2014 Apr; 47(6):1459-64. PubMed ID: 24524991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computation of trunk equilibrium and stability in free flexion-extension movements at different velocities.
    Bazrgari B; Shirazi-Adl A; Trottier M; Mathieu P
    J Biomech; 2008; 41(2):412-21. PubMed ID: 17897654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of prolonged sitting on the passive flexion stiffness of the in vivo lumbar spine.
    Beach TA; Parkinson RJ; Stothart JP; Callaghan JP
    Spine J; 2005; 5(2):145-54. PubMed ID: 15749614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematics and muscle activities of the lumbar spine during and after working in stooped postures.
    Zhu X; Shin G
    J Electromyogr Kinesiol; 2013 Aug; 23(4):801-6. PubMed ID: 23684731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compensatory behavior of the postural control system to flexion-relaxation phenomena.
    Hashemirad F; Talebian S; Olyaei GR; Hatef B
    J Bodyw Mov Ther; 2010 Oct; 14(4):418-23. PubMed ID: 20850051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.