BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 23643396)

  • 1. Autonomic nervous system dysfunction: implication in sickle cell disease.
    Connes P; Coates TD
    C R Biol; 2013 Mar; 336(3):142-7. PubMed ID: 23643396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autonomic nervous system involvement in sickle cell disease.
    Coates TD; Chalacheva P; Zeltzer L; Khoo MCK
    Clin Hemorheol Microcirc; 2018; 68(2-3):251-262. PubMed ID: 29614636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of blood rheology in sickle cell disease.
    Connes P; Alexy T; Detterich J; Romana M; Hardy-Dessources MD; Ballas SK
    Blood Rev; 2016 Mar; 30(2):111-8. PubMed ID: 26341565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biophysical markers of the peripheral vasoconstriction response to pain in sickle cell disease.
    Chalacheva P; Khaleel M; Sunwoo J; Shah P; Detterich JA; Kato RM; Thuptimdang W; Meiselman HJ; Sposto R; Tsao J; Wood JC; Zeltzer L; Coates TD; Khoo MCK
    PLoS One; 2017; 12(5):e0178353. PubMed ID: 28542469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency of pain crises in sickle cell anemia and its relationship with the sympatho-vagal balance, blood viscosity and inflammation.
    Nebor D; Bowers A; Hardy-Dessources MD; Knight-Madden J; Romana M; Reid H; Barthélémy JC; Cumming V; Hue O; Elion J; Reid M; Connes P;
    Haematologica; 2011 Nov; 96(11):1589-94. PubMed ID: 21750084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vaso-Occlusion in Sickle Cell Disease: Is Autonomic Dysregulation of the Microvasculature the Trigger?
    Veluswamy S; Shah P; Denton CC; Chalacheva P; Khoo MCK; Coates TD
    J Clin Med; 2019 Oct; 8(10):. PubMed ID: 31618931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sickle erythrocyte adherence to endothelium at low shear: role of shear stress in propagation of vaso-occlusion.
    Montes RA; Eckman JR; Hsu LL; Wick TM
    Am J Hematol; 2002 Jul; 70(3):216-27. PubMed ID: 12111767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peripheral vasoconstriction and abnormal parasympathetic response to sighs and transient hypoxia in sickle cell disease.
    Sangkatumvong S; Khoo MC; Kato R; Detterich JA; Bush A; Keens TG; Meiselman HJ; Wood JC; Coates TD
    Am J Respir Crit Care Med; 2011 Aug; 184(4):474-81. PubMed ID: 21616995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Which side of the balance determines the frequency of vaso-occlusive crises in children with sickle cell anemia: Blood viscosity or microvascular dysfunction?
    Charlot K; Romana M; Moeckesch B; Jumet S; Waltz X; Divialle-Doumdo L; Hardy-Dessources MD; Petras M; Tressières B; Tarer V; Hue O; Etienne-Julan M; Antoine-Jonville S; Connes P
    Blood Cells Mol Dis; 2016 Jan; 56(1):41-5. PubMed ID: 26603723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanics and biorheology of red blood cells in sickle cell anemia.
    Li X; Dao M; Lykotrafitis G; Karniadakis GE
    J Biomech; 2017 Jan; 50():34-41. PubMed ID: 27876368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mental stress causes vasoconstriction in subjects with sickle cell disease and in normal controls.
    Shah P; Khaleel M; Thuptimdang W; Sunwoo J; Veluswamy S; Chalacheva P; Kato RM; Detterich J; Wood JC; Zeltzer L; Sposto R; Khoo MCK; Coates TD
    Haematologica; 2020 Jan; 105(1):83-90. PubMed ID: 30975906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GBT440 improves red blood cell deformability and reduces viscosity of sickle cell blood under deoxygenated conditions.
    Dufu K; Patel M; Oksenberg D; Cabrales P
    Clin Hemorheol Microcirc; 2018; 70(1):95-105. PubMed ID: 29660913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erythrocyte/endothelial interactions in the pathogenesis of sickle-cell disease: a "real logical" assessment.
    Hebbel RP; Eaton JW; Steinberg MH; White JG
    Blood Cells; 1982; 8(1):163-73. PubMed ID: 7115974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular fluid tonicity impacts sickle red blood cell deformability and adhesion.
    Carden MA; Fay ME; Lu X; Mannino RG; Sakurai Y; Ciciliano JC; Hansen CE; Chonat S; Joiner CH; Wood DK; Lam WA
    Blood; 2017 Dec; 130(24):2654-2663. PubMed ID: 28978568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sickle cell anemia as a rheologic disease.
    Horne MK
    Am J Med; 1981 Feb; 70(2):288-98. PubMed ID: 7008586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Haemolysis and abnormal haemorheology in sickle cell anaemia.
    Connes P; Lamarre Y; Waltz X; Ballas SK; Lemonne N; Etienne-Julan M; Hue O; Hardy-Dessources MD; Romana M
    Br J Haematol; 2014 May; 165(4):564-72. PubMed ID: 24611951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood rheology abnormalities and vascular cell adhesion mechanisms in sickle cell trait carriers during exercise.
    Connes P; Hue O; Tripette J; Hardy-Dessources MD
    Clin Hemorheol Microcirc; 2008; 39(1-4):179-84. PubMed ID: 18503123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheological studies of erythrocyte-endothelial cell interactions in sickle cell disease.
    Barabino GA; McIntire LV; Eskin SG; Sears DA; Udden M
    Prog Clin Biol Res; 1987; 240():113-27. PubMed ID: 3615482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heart rate variability study in adult Nigerian subjects with sickle cell disease during vaso-occlusive crisis.
    Adebiyi AA; Oyebowale OM; Olaniyi AJ; Falase AO
    Niger Postgrad Med J; 2019; 26(1):8-12. PubMed ID: 30860193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using serial haemorheological parameters to assess clinical status in sickle cell anaemia patients in vaso-occlussive crisis.
    Awodu OA; Famodu AA; Ajayi OI; Enosolease ME; Olufemi OY; Olayemi E
    Clin Hemorheol Microcirc; 2009; 41(2):143-8. PubMed ID: 19252237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.