These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 23643619)

  • 1. Effect of the nanostructure of porous alumina on growth behavior of MG63 osteoblast-like cells.
    Song Y; Ju Y; Morita Y; Song G
    J Biosci Bioeng; 2013 Oct; 116(4):509-15. PubMed ID: 23643619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro proliferation and osteogenic differentiation of mesenchymal stem cells on nanoporous alumina.
    Song Y; Ju Y; Song G; Morita Y
    Int J Nanomedicine; 2013; 8():2745-56. PubMed ID: 23935364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface functionalization of nanoporous alumina with bone morphogenetic protein 2 for inducing osteogenic differentiation of mesenchymal stem cells.
    Song Y; Ju Y; Morita Y; Xu B; Song G
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():120-6. PubMed ID: 24582231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion.
    Swan EE; Popat KC; Desai TA
    Biomaterials; 2005 May; 26(14):1969-76. PubMed ID: 15576171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces.
    Popat KC; Chatvanichkul KI; Barnes GL; Latempa TJ; Grimes CA; Desai TA
    J Biomed Mater Res A; 2007 Mar; 80(4):955-64. PubMed ID: 17089417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical synthesis of three-dimensional porous reduced graphene oxide film: Preparation and in vitro osteogenic activity evaluation.
    Tian Z; Huang L; Pei X; Chen J; Wang T; Yang T; Qin H; Sui L; Wang J
    Colloids Surf B Biointerfaces; 2017 Jul; 155():150-158. PubMed ID: 28419944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro evaluation of osteoconductivity and cellular response of zirconia and alumina based ceramics.
    Pandey AK; Pati F; Mandal D; Dhara S; Biswas K
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3923-30. PubMed ID: 23910297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the response of osteoblast-like cells to the porous-alumina-assisted mixed-oxide nano-mound arrays.
    Fohlerova Z; Mozalev A
    J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1645-1654. PubMed ID: 28837748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial osteoblast-like cell response to pure titanium and zirconia/alumina ceramics.
    Ko HC; Han JS; Bächle M; Jang JH; Shin SW; Kim DJ
    Dent Mater; 2007 Nov; 23(11):1349-55. PubMed ID: 17197017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial in vitro interaction of osteoblasts with nano-porous alumina.
    Karlsson M; Pålsgård E; Wilshaw PR; Di Silvio L
    Biomaterials; 2003 Aug; 24(18):3039-46. PubMed ID: 12895576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoblast function on nanophase alumina materials: Influence of chemistry, phase, and topography.
    Price RL; Gutwein LG; Kaledin L; Tepper F; Webster TJ
    J Biomed Mater Res A; 2003 Dec; 67(4):1284-93. PubMed ID: 14624515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous alumina, zirconia and alumina/zirconia for bone repair: fabrication, mechanical and in vitro biological response.
    Hadjicharalambous C; Buyakov A; Buyakova S; Kulkov S; Chatzinikolaidou M
    Biomed Mater; 2015 Apr; 10(2):025012. PubMed ID: 25904146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of surface implant treatments on the biological behavior of SaOS-2 osteoblast-like cells. An in vitro comparative study.
    Conserva E; Menini M; Ravera G; Pera P
    Clin Oral Implants Res; 2013 Aug; 24(8):880-9. PubMed ID: 22251013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nanostructure effect on the adhesion and growth rates of epithelial cells with well-defined nanoporous alumina substrates.
    Chung SH; Son SJ; Min J
    Nanotechnology; 2010 Mar; 21(12):125104. PubMed ID: 20195010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes.
    Lee SJ; Choi JS; Park KS; Khang G; Lee YM; Lee HB
    Biomaterials; 2004 Aug; 25(19):4699-707. PubMed ID: 15120516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds.
    Kim HW; Kim HE; Salih V
    Biomaterials; 2005 Sep; 26(25):5221-30. PubMed ID: 15792549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding improved osteoblast behavior on select nanoporous anodic alumina.
    Ni S; Li C; Ni S; Chen T; Webster TJ
    Int J Nanomedicine; 2014; 9():3325-34. PubMed ID: 25045263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adhesion and proliferation of osteoblast-like cells on anodic porous alumina substrates with different morphology.
    Salerno M; Caneva-Soumetz F; Pastorino L; Patra N; Diaspro A; Ruggiero C
    IEEE Trans Nanobioscience; 2013 Jun; 12(2):106-11. PubMed ID: 23722279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zr61Ti2Cu25Al12 metallic glass for potential use in dental implants: biocompatibility assessment by in vitro cellular responses.
    Li J; Shi LL; Zhu ZD; He Q; Ai HJ; Xu J
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2113-21. PubMed ID: 23498239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal Control of Osteoblast Cell Growth and Behavior Dictated by Nanotopography and Shear Stress.
    Dhawan U; Pan HA; Chu YH; Huang GS; Chen PC; Chen WL
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):704-712. PubMed ID: 28029616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.