BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 23643891)

  • 1. Insertion of TAT peptide and perturbation of negatively charged model phospholipid bilayer revealed by neutron diffraction.
    Chen X; Sa'adedin F; Deme B; Rao P; Bradshaw J
    Biochim Biophys Acta; 2013 Aug; 1828(8):1982-8. PubMed ID: 23643891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient internalization of TAT peptide in zwitterionic DOPC phospholipid membrane revealed by neutron diffraction.
    Chen X; Liu S; Deme B; Cristiglio V; Marquardt D; Weller R; Rao P; Wang Y; Bradshaw J
    Biochim Biophys Acta Biomembr; 2017 May; 1859(5):910-916. PubMed ID: 28153495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specular neutron reflectivity studies of the interaction of cytochrome c with supported phosphatidylcholine bilayers doped with phosphatidylserine.
    Dabkowska AP; Fragneto G; Hughes AV; Quinn PJ; Lawrence MJ
    Langmuir; 2009 Apr; 25(7):4203-10. PubMed ID: 19714900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of cell-penetrating HIV1 TAT peptide insertion into PC/PS/CHOL model bilayers through transmembrane pores: the roles of cholesterol and anionic lipids.
    Hu Y; Patel S
    Soft Matter; 2016 Aug; 12(32):6716-27. PubMed ID: 27435187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translocation of the cell-penetrating Tat peptide across artificial bilayers and into living cells.
    Curnow P; Mellor H; Stephens DJ; Lorch M; Booth PJ
    Biochem Soc Symp; 2005; (72):199-209. PubMed ID: 15649143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative mechanisms for the interaction of the cell-penetrating peptides penetratin and the TAT peptide with lipid bilayers.
    Yesylevskyy S; Marrink SJ; Mark AE
    Biophys J; 2009 Jul; 97(1):40-9. PubMed ID: 19580742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-penetrating HIV1 TAT peptides float on model lipid bilayers.
    Ciobanasu C; Harms E; Tünnemann G; Cardoso MC; Kubitscheck U
    Biochemistry; 2009 Jun; 48(22):4728-37. PubMed ID: 19400584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Alzheimer's disease Aβ peptide binds to the anionic DMPS lipid bilayer.
    Lockhart C; Klimov DK
    Biochim Biophys Acta; 2016 Jun; 1858(6):1118-28. PubMed ID: 26947182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and dynamics of water at the interface with phospholipid bilayers.
    Bhide SY; Berkowitz ML
    J Chem Phys; 2005 Dec; 123(22):224702. PubMed ID: 16375490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between amyloid-beta (1-42) peptide and phospholipid bilayers: a molecular dynamics study.
    Davis CH; Berkowitz ML
    Biophys J; 2009 Feb; 96(3):785-97. PubMed ID: 19186121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cell-penetrating peptide TAT(48-60) induces a non-lamellar phase in DMPC membranes.
    Afonin S; Frey A; Bayerl S; Fischer D; Wadhwani P; Weinkauf S; Ulrich AS
    Chemphyschem; 2006 Oct; 7(10):2134-42. PubMed ID: 16986196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of substance P with phospholipid bilayers: A neutron diffraction study.
    Bradshaw JP; Davies SM; Hauss T
    Biophys J; 1998 Aug; 75(2):889-95. PubMed ID: 9675189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties.
    Doktorova M; Heberle FA; Kingston RL; Khelashvili G; Cuendet MA; Wen Y; Katsaras J; Feigenson GW; Vogt VM; Dick RA
    Biophys J; 2017 Nov; 113(9):2004-2015. PubMed ID: 29117524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides.
    Herce HD; Garcia AE; Litt J; Kane RS; Martin P; Enrique N; Rebolledo A; Milesi V
    Biophys J; 2009 Oct; 97(7):1917-25. PubMed ID: 19804722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of lipid charge in organization of water/lipid bilayer interface: insights via computer simulations.
    Polyansky AA; Volynsky PE; Nolde DE; Arseniev AS; Efremov RG
    J Phys Chem B; 2005 Aug; 109(31):15052-9. PubMed ID: 16852905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of β-amyloid (1-42) peptide to negatively charged phospholipid membranes in the liquid-ordered state: modeling and experimental studies.
    Ahyayauch H; Raab M; Busto JV; Andraka N; Arrondo JR; Masserini M; Tvaroska I; Goñi FM
    Biophys J; 2012 Aug; 103(3):453-463. PubMed ID: 22947861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fluorescence spectroscopy study on the interactions of the TAT-PTD peptide with model lipid membranes.
    Tiriveedhi V; Butko P
    Biochemistry; 2007 Mar; 46(12):3888-95. PubMed ID: 17338552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cause and effect of melittin-induced pore formation: a computational approach.
    Manna M; Mukhopadhyay C
    Langmuir; 2009 Oct; 25(20):12235-42. PubMed ID: 19754202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.
    Rajapaksha SP; Pal N; Zheng D; Lu HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052719. PubMed ID: 26651735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.