These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 23643891)
1. Insertion of TAT peptide and perturbation of negatively charged model phospholipid bilayer revealed by neutron diffraction. Chen X; Sa'adedin F; Deme B; Rao P; Bradshaw J Biochim Biophys Acta; 2013 Aug; 1828(8):1982-8. PubMed ID: 23643891 [TBL] [Abstract][Full Text] [Related]
2. Efficient internalization of TAT peptide in zwitterionic DOPC phospholipid membrane revealed by neutron diffraction. Chen X; Liu S; Deme B; Cristiglio V; Marquardt D; Weller R; Rao P; Wang Y; Bradshaw J Biochim Biophys Acta Biomembr; 2017 May; 1859(5):910-916. PubMed ID: 28153495 [TBL] [Abstract][Full Text] [Related]
3. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Ziegler A; Blatter XL; Seelig A; Seelig J Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253 [TBL] [Abstract][Full Text] [Related]
4. Specular neutron reflectivity studies of the interaction of cytochrome c with supported phosphatidylcholine bilayers doped with phosphatidylserine. Dabkowska AP; Fragneto G; Hughes AV; Quinn PJ; Lawrence MJ Langmuir; 2009 Apr; 25(7):4203-10. PubMed ID: 19714900 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamics of cell-penetrating HIV1 TAT peptide insertion into PC/PS/CHOL model bilayers through transmembrane pores: the roles of cholesterol and anionic lipids. Hu Y; Patel S Soft Matter; 2016 Aug; 12(32):6716-27. PubMed ID: 27435187 [TBL] [Abstract][Full Text] [Related]
6. Translocation of the cell-penetrating Tat peptide across artificial bilayers and into living cells. Curnow P; Mellor H; Stephens DJ; Lorch M; Booth PJ Biochem Soc Symp; 2005; (72):199-209. PubMed ID: 15649143 [TBL] [Abstract][Full Text] [Related]
7. Alternative mechanisms for the interaction of the cell-penetrating peptides penetratin and the TAT peptide with lipid bilayers. Yesylevskyy S; Marrink SJ; Mark AE Biophys J; 2009 Jul; 97(1):40-9. PubMed ID: 19580742 [TBL] [Abstract][Full Text] [Related]
8. Cell-penetrating HIV1 TAT peptides float on model lipid bilayers. Ciobanasu C; Harms E; Tünnemann G; Cardoso MC; Kubitscheck U Biochemistry; 2009 Jun; 48(22):4728-37. PubMed ID: 19400584 [TBL] [Abstract][Full Text] [Related]
9. The Alzheimer's disease Aβ peptide binds to the anionic DMPS lipid bilayer. Lockhart C; Klimov DK Biochim Biophys Acta; 2016 Jun; 1858(6):1118-28. PubMed ID: 26947182 [TBL] [Abstract][Full Text] [Related]
10. Structure and dynamics of water at the interface with phospholipid bilayers. Bhide SY; Berkowitz ML J Chem Phys; 2005 Dec; 123(22):224702. PubMed ID: 16375490 [TBL] [Abstract][Full Text] [Related]
11. Interaction between amyloid-beta (1-42) peptide and phospholipid bilayers: a molecular dynamics study. Davis CH; Berkowitz ML Biophys J; 2009 Feb; 96(3):785-97. PubMed ID: 19186121 [TBL] [Abstract][Full Text] [Related]
12. The cell-penetrating peptide TAT(48-60) induces a non-lamellar phase in DMPC membranes. Afonin S; Frey A; Bayerl S; Fischer D; Wadhwani P; Weinkauf S; Ulrich AS Chemphyschem; 2006 Oct; 7(10):2134-42. PubMed ID: 16986196 [TBL] [Abstract][Full Text] [Related]
13. Interaction of substance P with phospholipid bilayers: A neutron diffraction study. Bradshaw JP; Davies SM; Hauss T Biophys J; 1998 Aug; 75(2):889-95. PubMed ID: 9675189 [TBL] [Abstract][Full Text] [Related]
14. Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties. Doktorova M; Heberle FA; Kingston RL; Khelashvili G; Cuendet MA; Wen Y; Katsaras J; Feigenson GW; Vogt VM; Dick RA Biophys J; 2017 Nov; 113(9):2004-2015. PubMed ID: 29117524 [TBL] [Abstract][Full Text] [Related]
15. Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides. Herce HD; Garcia AE; Litt J; Kane RS; Martin P; Enrique N; Rebolledo A; Milesi V Biophys J; 2009 Oct; 97(7):1917-25. PubMed ID: 19804722 [TBL] [Abstract][Full Text] [Related]
16. Role of lipid charge in organization of water/lipid bilayer interface: insights via computer simulations. Polyansky AA; Volynsky PE; Nolde DE; Arseniev AS; Efremov RG J Phys Chem B; 2005 Aug; 109(31):15052-9. PubMed ID: 16852905 [TBL] [Abstract][Full Text] [Related]
17. Binding of β-amyloid (1-42) peptide to negatively charged phospholipid membranes in the liquid-ordered state: modeling and experimental studies. Ahyayauch H; Raab M; Busto JV; Andraka N; Arrondo JR; Masserini M; Tvaroska I; Goñi FM Biophys J; 2012 Aug; 103(3):453-463. PubMed ID: 22947861 [TBL] [Abstract][Full Text] [Related]
18. A fluorescence spectroscopy study on the interactions of the TAT-PTD peptide with model lipid membranes. Tiriveedhi V; Butko P Biochemistry; 2007 Mar; 46(12):3888-95. PubMed ID: 17338552 [TBL] [Abstract][Full Text] [Related]
19. Cause and effect of melittin-induced pore formation: a computational approach. Manna M; Mukhopadhyay C Langmuir; 2009 Oct; 25(20):12235-42. PubMed ID: 19754202 [TBL] [Abstract][Full Text] [Related]
20. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane. Rajapaksha SP; Pal N; Zheng D; Lu HP Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052719. PubMed ID: 26651735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]