These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 23643926)

  • 41. Identification of neural activity based on fMRI data: a simulation study.
    Hemmelmann D; Leistritz L; Witte H; Galicki M
    J Physiol Paris; 2009 Nov; 103(6):353-60. PubMed ID: 19497366
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Real-time fMRI processing with physiological noise correction - Comparison with off-line analysis.
    Misaki M; Barzigar N; Zotev V; Phillips R; Cheng S; Bodurka J
    J Neurosci Methods; 2015 Dec; 256():117-21. PubMed ID: 26343529
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Data-Driven Approach to the Analysis of Real-Time FMRI Neurofeedback Data: Disorder-Specific Brain Synchrony in PTSD.
    Zweerings J; Sarasjärvi K; Mathiak KA; Iglesias-Fuster J; Cong F; Zvyagintsev M; Mathiak K
    Int J Neural Syst; 2021 Nov; 31(11):2150043. PubMed ID: 34551675
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Emotion self-regulation training in major depressive disorder using simultaneous real-time fMRI and EEG neurofeedback.
    Zotev V; Mayeli A; Misaki M; Bodurka J
    Neuroimage Clin; 2020; 27():102331. PubMed ID: 32623140
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Self-regulation of inter-hemispheric visual cortex balance through real-time fMRI neurofeedback training.
    Robineau F; Rieger SW; Mermoud C; Pichon S; Koush Y; Van De Ville D; Vuilleumier P; Scharnowski F
    Neuroimage; 2014 Oct; 100():1-14. PubMed ID: 24904993
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Advances in fMRI Real-Time Neurofeedback.
    Watanabe T; Sasaki Y; Shibata K; Kawato M
    Trends Cogn Sci; 2017 Dec; 21(12):997-1010. PubMed ID: 29031663
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Self-regulating positive emotion networks by feedback of multiple emotional brain states using real-time fMRI.
    Li Z; Tong L; Wang L; Li Y; He W; Guan M; Yan B
    Exp Brain Res; 2016 Dec; 234(12):3575-3586. PubMed ID: 27534862
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Brain-computer interfaces for EEG neurofeedback: peculiarities and solutions.
    Huster RJ; Mokom ZN; Enriquez-Geppert S; Herrmann CS
    Int J Psychophysiol; 2014 Jan; 91(1):36-45. PubMed ID: 24012908
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Applications of real-time fMRI.
    deCharms RC
    Nat Rev Neurosci; 2008 Sep; 9(9):720-9. PubMed ID: 18714327
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A proof-of-principle study of multi-site real-time functional imaging at 3T and 7T: Implementation and validation.
    Baecke S; Lützkendorf R; Mallow J; Luchtmann M; Tempelmann C; Stadler J; Bernarding J
    Sci Rep; 2015 Feb; 5():8413. PubMed ID: 25672521
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Real-time automated spectral assessment of the BOLD response for neurofeedback at 3 and 7T.
    Koush Y; Elliott MA; Scharnowski F; Mathiak K
    J Neurosci Methods; 2013 Sep; 218(2):148-60. PubMed ID: 23685226
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Just a very expensive breathing training? Risk of respiratory artefacts in functional connectivity-based real-time fMRI neurofeedback.
    Weiss F; Zamoscik V; Schmidt SNL; Halli P; Kirsch P; Gerchen MF
    Neuroimage; 2020 Apr; 210():116580. PubMed ID: 31987998
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of large-scale networks in the brain using fMRI.
    Bellec P; Perlbarg V; Jbabdi S; Pélégrini-Issac M; Anton JL; Doyon J; Benali H
    Neuroimage; 2006 Feb; 29(4):1231-43. PubMed ID: 16246590
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution.
    Roebroeck A; Formisano E; Goebel R
    Neuroimage; 2011 Sep; 58(2):296-302. PubMed ID: 19786106
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Distributed BOLD and CBV-weighted resting-state networks in the mouse brain.
    Sforazzini F; Schwarz AJ; Galbusera A; Bifone A; Gozzi A
    Neuroimage; 2014 Feb; 87():403-15. PubMed ID: 24080504
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neurofeedback: A promising tool for the self-regulation of emotion networks.
    Johnston SJ; Boehm SG; Healy D; Goebel R; Linden DE
    Neuroimage; 2010 Jan; 49(1):1066-72. PubMed ID: 19646532
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neurofeedback, Self-Regulation, and Brain Imaging: Clinical Science and Fad in the Service of Mental Disorders.
    Thibault RT; Lifshitz M; Birbaumer N; Raz A
    Psychother Psychosom; 2015; 84(4):193-207. PubMed ID: 26021883
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Real-Time fMRI in Neuroscience Research and Its Use in Studying the Aging Brain.
    Rana M; Varan AQ; Davoudi A; Cohen RA; Sitaram R; Ebner NC
    Front Aging Neurosci; 2016; 8():239. PubMed ID: 27803662
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Brain connectivity during resting state and subsequent working memory task predicts behavioural performance.
    Sala-Llonch R; Peña-Gómez C; Arenaza-Urquijo EM; Vidal-Piñeiro D; Bargalló N; Junqué C; Bartrés-Faz D
    Cortex; 2012 Oct; 48(9):1187-96. PubMed ID: 21872853
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quality and denoising in real-time functional magnetic resonance imaging neurofeedback: A methods review.
    Heunis S; Lamerichs R; Zinger S; Caballero-Gaudes C; Jansen JFA; Aldenkamp B; Breeuwer M
    Hum Brain Mapp; 2020 Aug; 41(12):3439-3467. PubMed ID: 32333624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.