These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 23643957)

  • 1. Comparison of chlorine and ammonia concentration field trial data with calculated results from a Gaussian atmospheric transport and dispersion model.
    Bauer TJ
    J Hazard Mater; 2013 Jun; 254-255():325-335. PubMed ID: 23643957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Jack Rabbit chlorine release experiments: implications of dense gas removal from a depression and downwind concentrations.
    Hanna S; Britter R; Argenta E; Chang J
    J Hazard Mater; 2012 Apr; 213-214():406-12. PubMed ID: 22386303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling an irritant gas plume for epidemiologic study.
    Jani DD; Reed D; Feigley CE; Svendsen ER
    Int J Environ Health Res; 2016; 26(1):58-74. PubMed ID: 25772143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallelisation and application of a multi-layer atmospheric transport model to quantify dispersion and deposition of ammonia over the British Isles.
    Fournier N; Pais VA; Sutton MA; Weston KJ; Dragosits U; Tang SY; Aherne J
    Environ Pollut; 2002; 116(1):95-107. PubMed ID: 11808558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple model for screening the local impacts of atmospheric ammonia.
    Theobald MR; Bealey WJ; Tang YS; Vallejo A; Sutton MA
    Sci Total Environ; 2009 Nov; 407(23):6024-33. PubMed ID: 19765803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ammonia emissions from an anaerobic digestion plant estimated using atmospheric measurements and dispersion modelling.
    Bell MW; Tang YS; Dragosits U; Flechard CR; Ward P; Braban CF
    Waste Manag; 2016 Oct; 56():113-24. PubMed ID: 27302836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling dispersion from toxic gas released after a train collision in Graniteville, SC.
    Buckley RL; Hunter CH; Addis RP; Parker MJ
    J Air Waste Manag Assoc; 2007 Mar; 57(3):268-78. PubMed ID: 17385592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examination of the uncertainty in air concentration predictions using Hanford field data.
    Miller CW; Fields DE; Cotter SJ
    Health Phys; 1988 Aug; 55(2):443-50. PubMed ID: 3410717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic characteristics of chlorine dispersion process and quantitative risk assessment of pollution hazard.
    Xin B; Yu J; Dang W; Wan L
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):46161-46175. PubMed ID: 33415617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorption of atmospheric ammonia by soil and perennial grass downwind from two large cattle feedlots.
    Hao X; Chang C; Janzen HH; Clayton G; Hill BR
    J Environ Qual; 2006; 35(5):1960-5. PubMed ID: 16973637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorine truck attack consequences and mitigation.
    Barrett AM; Adams PJ
    Risk Anal; 2011 Aug; 31(8):1243-59. PubMed ID: 21395636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of vulnerable zones due to accidental release of toxic materials resulting in dense gas clouds.
    Singh MP; Mohan M; Panwar TS; Chopra HV
    Risk Anal; 1991 Sep; 11(3):425-40. PubMed ID: 1947349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the spread of a cold instantaneous heavy gas release with surface heat transfer and variable entrainment.
    Kumar A; Mahurkar A; Joshi A
    J Hazard Mater; 2003 Jul; 101(2):157-77. PubMed ID: 12927733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of an irritant gas plume model for epidemiologic study.
    Jani DD; Wilson M; Wickliffe JK; Shaffer J; Middleton T; Rando R; Svendsen ER
    Int J Environ Health Res; 2017 Aug; 27(4):276-292. PubMed ID: 28661191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaporation losses and dispersion of volatile organic compounds from tank farms.
    Howari FM
    Environ Monit Assess; 2015 May; 187(5):273. PubMed ID: 25893754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of the atmospheric dispersion of a high release of krypton-85 above a complex coastal terrain, comparison with the predictions of Gaussian models (Briggs, Doury, ADMS4).
    Leroy C; Maro D; Hébert D; Solier L; Rozet M; Le Cavelier S; Connan O
    J Environ Radioact; 2010 Nov; 101(11):937-44. PubMed ID: 20638159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of gaseous pollutant dispersion around an isolated building using the k-ω SST (shear stress transport) turbulence model.
    Yu H; Thé J
    J Air Waste Manag Assoc; 2017 May; 67(5):517-536. PubMed ID: 27650217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic liquids storage tanks volatile organic compounds (VOCS) emissions dispersion and risk assessment in developing countries: the case of Dar-es-Salaam City, Tanzania.
    Jackson MM
    Environ Monit Assess; 2006 May; 116(1-3):363-82. PubMed ID: 16779602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Atmospheric Ammonia/Ammonium-nitrogen Concentrations and Wet and Dry Deposition Rates in a Double Rice Region in Subtropical China].
    Wang JF; Zhu X; Shen JL; Zeng GJ; Wang J; Wu JS; Li Y
    Huan Jing Ke Xue; 2017 Jun; 38(6):2264-2272. PubMed ID: 29965342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.