These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. On the mechanism of antidepressant-like action of berberine chloride. Kulkarni SK; Dhir A Eur J Pharmacol; 2008 Jul; 589(1-3):163-72. PubMed ID: 18585703 [TBL] [Abstract][Full Text] [Related]
23. Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats. Koike H; Chaki S Behav Brain Res; 2014 Sep; 271():111-5. PubMed ID: 24909673 [TBL] [Abstract][Full Text] [Related]
24. The effects of mGlu₇ receptor modulation in behavioural models sensitive to antidepressant action in two mouse strains. O'Connor RM; Cryan JF Behav Pharmacol; 2013 Apr; 24(2):105-13. PubMed ID: 23455446 [TBL] [Abstract][Full Text] [Related]
25. Involvement of NMDA receptors and L-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effects of escitalopram in the forced swimming test. Zomkowski AD; Engel D; Gabilan NH; Rodrigues AL Eur Neuropsychopharmacol; 2010 Nov; 20(11):793-801. PubMed ID: 20810255 [TBL] [Abstract][Full Text] [Related]
26. The involvement of NMDA and AMPA receptors in the mechanism of antidepressant-like action of zinc in the forced swim test. Szewczyk B; Poleszak E; Sowa-Kućma M; Wróbel A; Słotwiński S; Listos J; Wlaź P; Cichy A; Siwek A; Dybała M; Gołembiowska K; Pilc A; Nowak G Amino Acids; 2010 Jun; 39(1):205-17. PubMed ID: 19956994 [TBL] [Abstract][Full Text] [Related]
27. Antidepressant-like effects of low ketamine dose is associated with increased hippocampal AMPA/NMDA receptor density ratio in female Wistar-Kyoto rats. Tizabi Y; Bhatti BH; Manaye KF; Das JR; Akinfiresoye L Neuroscience; 2012 Jun; 213():72-80. PubMed ID: 22521815 [TBL] [Abstract][Full Text] [Related]
28. GluN2B subunits of the NMDA receptor contribute to the AMPA receptor internalization during long-term depression in the lateral amygdala of juvenile rats. Yu SY; Wu DC; Zhan RZ Neuroscience; 2010 Dec; 171(4):1102-8. PubMed ID: 20884329 [TBL] [Abstract][Full Text] [Related]
29. AMPA Receptor Activation-Independent Antidepressant Actions of Ketamine Metabolite (S)-Norketamine. Yang C; Kobayashi S; Nakao K; Dong C; Han M; Qu Y; Ren Q; Zhang JC; Ma M; Toki H; Yamaguchi JI; Chaki S; Shirayama Y; Nakazawa K; Manabe T; Hashimoto K Biol Psychiatry; 2018 Oct; 84(8):591-600. PubMed ID: 29945718 [TBL] [Abstract][Full Text] [Related]
30. Effect of NMDAR antagonists in the tetrabenazine test for antidepressants: comparison with the tail suspension test. Skolnick P; Kos T; Czekaj J; Popik P Acta Neuropsychiatr; 2015 Aug; 27(4):228-34. PubMed ID: 25858023 [TBL] [Abstract][Full Text] [Related]
31. Chronic nicotine-induced switch in Src-family kinase signaling for long-term potentiation induction in hippocampal CA1 pyramidal cells. Yamazaki Y; Jia Y; Wong JK; Sumikawa K Eur J Neurosci; 2006 Dec; 24(11):3271-84. PubMed ID: 17156388 [TBL] [Abstract][Full Text] [Related]
32. Antidepressant-like effect of scopoletin, a coumarin isolated from Polygala sabulosa (Polygalaceae) in mice: evidence for the involvement of monoaminergic systems. Capra JC; Cunha MP; Machado DG; Zomkowski AD; Mendes BG; Santos AR; Pizzolatti MG; Rodrigues AL Eur J Pharmacol; 2010 Sep; 643(2-3):232-8. PubMed ID: 20599906 [TBL] [Abstract][Full Text] [Related]
33. Effects of ketamine and N-methyl-D-aspartate on fluoxetine-induced antidepressant-related behavior using the forced swimming test. Owolabi RA; Akanmu MA; Adeyemi OI Neurosci Lett; 2014 Apr; 566():172-6. PubMed ID: 24530380 [TBL] [Abstract][Full Text] [Related]
34. Evaluation of antidepressant activity of 1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-YL)-cyclohexanol, a β-substituted phenylethylamine in mice. Dhir A; Malik S; Kessar SV; Singh KN; Kulkarni SK Eur Neuropsychopharmacol; 2011 Sep; 21(9):705-14. PubMed ID: 21277753 [TBL] [Abstract][Full Text] [Related]
35. The antidepressant-like effects of glutamatergic drugs ketamine and AMPA receptor potentiator LY 451646 are preserved in bdnf⁺/⁻ heterozygous null mice. Lindholm JS; Autio H; Vesa L; Antila H; Lindemann L; Hoener MC; Skolnick P; Rantamäki T; Castrén E Neuropharmacology; 2012 Jan; 62(1):391-7. PubMed ID: 21867718 [TBL] [Abstract][Full Text] [Related]
36. Antidepressant-like effects of an AMPA receptor potentiator under a chronic mild stress paradigm. Farley S; Apazoglou K; Witkin JM; Giros B; Tzavara ET Int J Neuropsychopharmacol; 2010 Oct; 13(9):1207-18. PubMed ID: 20059803 [TBL] [Abstract][Full Text] [Related]
37. Methoxetamine produces rapid and sustained antidepressant effects probably via glutamatergic and serotonergic mechanisms. Botanas CJ; Bryan de la Peña J; Custodio RJ; Joy Dela Peña I; Kim M; Woo T; Kim HJ; Kim HI; Chang Cho M; Lee YS; Cheong JH Neuropharmacology; 2017 Nov; 126():121-127. PubMed ID: 28867363 [TBL] [Abstract][Full Text] [Related]
38. Ketamine's rapid antidepressant effects are mediated by Ca Zaytseva A; Bouckova E; Wiles MJ; Wustrau MH; Schmidt IG; Mendez-Vazquez H; Khatri L; Kim S Elife; 2023 Jun; 12():. PubMed ID: 37358072 [TBL] [Abstract][Full Text] [Related]
39. [Modulation of hippocampal glutamate and NMDA/AMPA receptor by homocysteine in chronic unpredictable mild stress-induced rat depression]. Liu H; Wen LM; Qiao H; An SC Sheng Li Xue Bao; 2013 Feb; 65(1):61-71. PubMed ID: 23426515 [TBL] [Abstract][Full Text] [Related]
40. Study of antidepressant drugs in GPR39 (zinc receptor⁻/⁻) knockout mice, showing no effect of conventional antidepressants, but effectiveness of NMDA antagonists. Młyniec K; Gaweł M; Nowak G Behav Brain Res; 2015; 287():135-8. PubMed ID: 25827929 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]