These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 23644057)

  • 1. Responses of primate LGN cells to moving stimuli involve a constant background modulation by feedback from area MT.
    Jones HE; Andolina IM; Grieve KL; Wang W; Salt TE; Cudeiro J; Sillito AM
    Neuroscience; 2013 Aug; 246():254-64. PubMed ID: 23644057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the primate lateral geniculate nucleus: a review of experiments and methods.
    Jeffries AM; Killian NJ; Pezaris JS
    J Physiol Paris; 2014 Feb; 108(1):3-10. PubMed ID: 24270042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential feedback modulation of center and surround mechanisms in parvocellular cells in the visual thalamus.
    Jones HE; Andolina IM; Ahmed B; Shipp SD; Clements JT; Grieve KL; Cudeiro J; Salt TE; Sillito AM
    J Neurosci; 2012 Nov; 32(45):15946-51. PubMed ID: 23136432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fast, reciprocal pathway between the lateral geniculate nucleus and visual cortex in the macaque monkey.
    Briggs F; Usrey WM
    J Neurosci; 2007 May; 27(20):5431-6. PubMed ID: 17507565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of feedforward thalamic afferents and corticogeniculate feedback to the spatial summation area of macaque V1 and LGN.
    Angelucci A; Sainsbury K
    J Comp Neurol; 2006 Sep; 498(3):330-51. PubMed ID: 16871526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The direct, not V1-mediated, functional influence between the thalamus and middle temporal complex in the human brain is modulated by the speed of visual motion.
    Gaglianese A; Costagli M; Ueno K; Ricciardi E; Bernardi G; Pietrini P; Cheng K
    Neuroscience; 2015 Jan; 284():833-844. PubMed ID: 25450965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Acute Visual Experience on Development of LGN Receptive Fields in the Ferret.
    Stacy AK; Schneider NA; Gilman NK; Van Hooser SD
    J Neurosci; 2023 May; 43(19):3495-3508. PubMed ID: 37028934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Computational Model of Direction Selectivity in Macaque V1 Cortex Based on Dynamic Differences between On and Off Pathways.
    Chariker L; Shapley R; Hawken M; Young LS
    J Neurosci; 2022 Apr; 42(16):3365-3380. PubMed ID: 35241489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal and Nonretinal Contributions to Extraclassical Surround Suppression in the Lateral Geniculate Nucleus.
    Fisher TG; Alitto HJ; Usrey WM
    J Neurosci; 2017 Jan; 37(1):226-235. PubMed ID: 28053044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blindsight depends on the lateral geniculate nucleus.
    Schmid MC; Mrowka SW; Turchi J; Saunders RC; Wilke M; Peters AJ; Ye FQ; Leopold DA
    Nature; 2010 Jul; 466(7304):373-7. PubMed ID: 20574422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual spatial summation in macaque geniculocortical afferents.
    Sceniak MP; Chatterjee S; Callaway EM
    J Neurophysiol; 2006 Dec; 96(6):3474-84. PubMed ID: 16928793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corticothalamic interactions in the transfer of visual information.
    Sillito AM; Jones HE
    Philos Trans R Soc Lond B Biol Sci; 2002 Dec; 357(1428):1739-52. PubMed ID: 12626008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for γ-band oscillations.
    Bastos AM; Briggs F; Alitto HJ; Mangun GR; Usrey WM
    J Neurosci; 2014 May; 34(22):7639-44. PubMed ID: 24872567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional imaging of the human lateral geniculate nucleus and pulvinar.
    Kastner S; O'Connor DH; Fukui MM; Fehd HM; Herwig U; Pinsk MA
    J Neurophysiol; 2004 Jan; 91(1):438-48. PubMed ID: 13679404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bypassing V1: a direct geniculate input to area MT.
    Sincich LC; Park KF; Wohlgemuth MJ; Horton JC
    Nat Neurosci; 2004 Oct; 7(10):1123-8. PubMed ID: 15378066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat (with an appendix on geniculo-cortical mono-synaptic connections).
    Tsumoto T; Creutzfeldt OD; Legéndy CR
    Exp Brain Res; 1978 Jul; 32(3):345-64. PubMed ID: 210031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
    Naito T; Sadakane O; Okamoto M; Sato H
    Neuroscience; 2007 Nov; 149(4):962-75. PubMed ID: 17945429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The parvocellular LGN provides a robust disynaptic input to the visual motion area MT.
    Nassi JJ; Lyon DC; Callaway EM
    Neuron; 2006 Apr; 50(2):319-27. PubMed ID: 16630841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Color responses of the human lateral geniculate nucleus: [corrected] selective amplification of S-cone signals between the lateral geniculate nucleno and primary visual cortex measured with high-field fMRI.
    Mullen KT; Dumoulin SO; Hess RF
    Eur J Neurosci; 2008 Nov; 28(9):1911-23. PubMed ID: 18973604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity.
    De Valois RL; Cottaris NP; Mahon LE; Elfar SD; Wilson JA
    Vision Res; 2000; 40(27):3685-702. PubMed ID: 11090662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.