These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 23644302)

  • 1. The nucleation site selection of vapour-liquid-solid nanowires.
    Liu X; Dubrovskii VG; Ren X
    J Phys Condens Matter; 2013 May; 25(21):215302. PubMed ID: 23644302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of the surface migration of gold on the growth of silicon nanowires.
    Hannon JB; Kodambaka S; Ross FM; Tromp RM
    Nature; 2006 Mar; 440(7080):69-71. PubMed ID: 16452928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth mechanism of GaN nanowires: preferred nucleation site and effect of hydrogen.
    Lim SK; Crawford S; Gradecak S
    Nanotechnology; 2010 Aug; 21(34):345604. PubMed ID: 20683137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth characteristics of GaAs nanowires obtained by selective area metal-organic vapour-phase epitaxy.
    Ikejiri K; Sato T; Yoshida H; Hiruma K; Motohisa J; Hara S; Fukui T
    Nanotechnology; 2008 Jul; 19(26):265604. PubMed ID: 21828685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Twinning superlattices in indium phosphide nanowires.
    Algra RE; Verheijen MA; Borgström MT; Feiner LF; Immink G; van Enckevort WJ; Vlieg E; Bakkers EP
    Nature; 2008 Nov; 456(7220):369-72. PubMed ID: 19020617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defect studies of ZnSe nanowires.
    Philipose U; Saxena A; Ruda HE; Simpson PJ; Wang YQ; Kavanagh KL
    Nanotechnology; 2008 May; 19(21):215715. PubMed ID: 21730594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of the liquid phase shape on the structure of III-V nanowires.
    Krogstrup P; Curiotto S; Johnson E; Aagesen M; Nygård J; Chatain D
    Phys Rev Lett; 2011 Mar; 106(12):125505. PubMed ID: 21517326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterotwin Zn
    Escobar Steinvall S; Ghisalberti L; Zamani RR; Tappy N; Hage FS; Stutz EZ; Zamani M; Paul R; Leran JB; Ramasse QM; Craig Carter W; Fontcuberta I Morral A
    Nanoscale; 2020 Nov; 12(44):22534-22540. PubMed ID: 33090166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the true shape of Au-catalyzed GaAs nanowires.
    Jiang N; Wong-Leung J; Joyce HJ; Gao Q; Tan HH; Jagadish C
    Nano Lett; 2014 Oct; 14(10):5865-72. PubMed ID: 25244584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleation antibunching in catalyst-assisted nanowire growth.
    Glas F; Harmand JC; Patriarche G
    Phys Rev Lett; 2010 Apr; 104(13):135501. PubMed ID: 20481891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-nucleation evolution of the liquid-solid interface in nanowire growth.
    Maliakkal CB; Jacobsson D; Tornberg M; Dick KA
    Nanotechnology; 2021 Dec; 33(10):. PubMed ID: 34847548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of single tiers of bridging silicon nanowires for transistor applications using vapor-liquid-solid growth from short silicon-on-insulator sidewalls.
    Nayfeh OM; Antoniadis DA; Boles S; Ho C; Thompson CV
    Small; 2009 Nov; 5(21):2440-4. PubMed ID: 19642093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomistics of vapour-liquid-solid nanowire growth.
    Wang H; Zepeda-Ruiz LA; Gilmer GH; Upmanyu M
    Nat Commun; 2013; 4():1956. PubMed ID: 23752586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Twinning superlattice formation in GaAs nanowires.
    Burgess T; Breuer S; Caroff P; Wong-Leung J; Gao Q; Hoe Tan H; Jagadish C
    ACS Nano; 2013 Sep; 7(9):8105-14. PubMed ID: 23987994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of surface and twinning energies on twining-superlattice formation in group III-V semiconductor nanowires: a first-principles study.
    Akiyama T; Nakamura K; Ito T
    Nanotechnology; 2019 Jun; 30(23):234002. PubMed ID: 30759424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of Nucleation Mechanism and Tapering Observed in ZnO Nanowire Growth by Carbothermal Reduction Technique.
    Kar A; Low KB; Oye M; Stroscio MA; Dutta M; Nicholls A; Meyyappan M
    Nanoscale Res Lett; 2011 Dec; 6(1):3. PubMed ID: 27502628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural properties of <111>B -oriented III-V nanowires.
    Johansson J; Karlsson LS; Svensson CP; Mårtensson T; Wacaser BA; Deppert K; Samuelson L; Seifert W
    Nat Mater; 2006 Jul; 5(7):574-80. PubMed ID: 16783358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical elasticity of vapour-liquid-solid grown GaN nanowires.
    Chen Y; Stevenson I; Pouy R; Wang L; McIlroy DN; Pounds T; Grant Norton M; Eric Aston D
    Nanotechnology; 2007 Apr; 18(13):135708. PubMed ID: 21730393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limits of III-V Nanowire Growth Based on Droplet Dynamics.
    Tornberg M; Maliakkal CB; Jacobsson D; Dick KA; Johansson J
    J Phys Chem Lett; 2020 Apr; 11(8):2949-2954. PubMed ID: 32208728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective-area vapour-liquid-solid growth of InP nanowires.
    Dalacu D; Kam A; Guy Austing D; Wu X; Lapointe J; Aers GC; Poole PJ
    Nanotechnology; 2009 Sep; 20(39):395602. PubMed ID: 19724116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.