These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 23644521)

  • 1. H2 evolution at Si-based metal-insulator-semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover.
    Esposito DV; Levin I; Moffat TP; Talin AA
    Nat Mater; 2013 Jun; 12(6):562-8. PubMed ID: 23644521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory and Simulation of Metal-Insulator-Semiconductor (MIS) Photoelectrodes.
    King AJ; Weber AZ; Bell AT
    ACS Appl Mater Interfaces; 2023 May; 15(19):23024-23039. PubMed ID: 37154402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design Principles for Efficient and Stable Water Splitting Photoelectrocatalysts.
    Hemmerling JR; Mathur A; Linic S
    Acc Chem Res; 2021 Apr; 54(8):1992-2002. PubMed ID: 33794089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial decoupling of light absorption and reaction sites in n-Si photocathodes for solar water splitting.
    Wang S; Wang T; Liu B; Li H; Feng S; Gong J
    Natl Sci Rev; 2021 Aug; 8(8):nwaa293. PubMed ID: 34691709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bismuth Vanadate Photoelectrodes with High Photovoltage as Photoanode and Photocathode in Photoelectrochemical Cells for Water Splitting.
    Dos Santos WS; Rodriguez M; Khoury JMO; Nascimento LA; Ribeiro RJP; Mesquita JP; Silva AC; Nogueira FGE; Pereira MC
    ChemSusChem; 2018 Feb; 11(3):589-597. PubMed ID: 29193761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Performance of Si MIS Photocathodes Containing Oxide-Coated Nanoparticle Electrocatalysts.
    Labrador NY; Li X; Liu Y; Tan H; Wang R; Koberstein JT; Moffat TP; Esposito DV
    Nano Lett; 2016 Oct; 16(10):6452-6459. PubMed ID: 27635659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting.
    Ke J; He F; Wu H; Lyu S; Liu J; Yang B; Li Z; Zhang Q; Chen J; Lei L; Hou Y; Ostrikov K
    Nanomicro Lett; 2020 Nov; 13(1):24. PubMed ID: 34138209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal Silicidation in Conjunction with Dopant Segregation: A Promising Strategy for Fabricating High-Performance Silicon-Based Photoanodes.
    Li S; She G; Xu J; Zhang S; Zhang H; Mu L; Ge C; Jin K; Luo J; Shi W
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39092-39097. PubMed ID: 32805824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidatively stable nanoporous silicon photocathodes with enhanced onset voltage for photoelectrochemical proton reduction.
    Zhao Y; Anderson NC; Zhu K; Aguiar JA; Seabold JA; van de Lagemaat J; Branz HM; Neale NR; Oh J
    Nano Lett; 2015 Apr; 15(4):2517-25. PubMed ID: 25723908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting PEC performance of Si photoelectrodes by coupling bifunctional CuCo hybrid oxide cocatalysts.
    Wang Y; Tian W; Cao F; Fang D; Chen S; Li L
    Nanotechnology; 2018 Oct; 29(42):425703. PubMed ID: 30070654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon based photoelectrodes for photoelectrochemical water splitting.
    Fan R; Mi Z; Shen M
    Opt Express; 2019 Feb; 27(4):A51-A80. PubMed ID: 30876004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transferred monolayer MoS
    Hassan MA; Kim MW; Johar MA; Waseem A; Kwon MK; Ryu SW
    Sci Rep; 2019 Dec; 9(1):20141. PubMed ID: 31882920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Photoelectrochemical Hydrogen Evolution on Silicon Photocathodes Interfaced with Nanostructured NiP
    Chen F; Zhu Q; Wang Y; Cui W; Su X; Li Y
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31025-31031. PubMed ID: 27768279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoelectrochemical Water Splitting with p-Type Metal Oxide Semiconductor Photocathodes.
    Jang YJ; Lee JS
    ChemSusChem; 2019 May; 12(9):1835-1845. PubMed ID: 30614648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximizing Oxygen Evolution Performance on a Transparent NiFeO
    Kawase Y; Higashi T; Katayama M; Domen K; Takanabe K
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16317-16325. PubMed ID: 33797878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for Semiconductor/Electrocatalyst Coupling toward Solar-Driven Water Splitting.
    Thalluri SM; Bai L; Lv C; Huang Z; Hu X; Liu L
    Adv Sci (Weinh); 2020 Mar; 7(6):1902102. PubMed ID: 32195077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and Compositional Investigations on the Stability of Cuprous Oxide Nanowire Photocathodes for Photoelectrochemical Water Splitting.
    Son MK; Pan L; Mayer MT; Hagfeldt A; Grätzel M; Luo J
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55080-55091. PubMed ID: 34761678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Anchoring Groups on the Charge Transfer and Performance of p-Si/TiO
    Gong L; Yin H; Nie C; Sun X; Wang X; Wang M
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34010-34019. PubMed ID: 31453677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. InGaAsP as a Promising Narrow Band Gap Semiconductor for Photoelectrochemical Water Splitting.
    Butson JD; Narangari PR; Lysevych M; Wong-Leung J; Wan Y; Karuturi SK; Tan HH; Jagadish C
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25236-25242. PubMed ID: 31265227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable, highly stable Si-based metal-insulator-semiconductor photoanodes for water oxidation fabricated using thin-film reactions and electrodeposition.
    Lee S; Ji L; De Palma AC; Yu ET
    Nat Commun; 2021 Jun; 12(1):3982. PubMed ID: 34172754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.