These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 23644684)

  • 1. In-situ zinc bioprecipitation by organic substrate injection in a high-flow, poorly reduced aquifer.
    Lookman R; Verbeeck M; Gemoets J; Van Roy S; Crynen J; Lambié B
    J Contam Hydrol; 2013 Jul; 150():25-34. PubMed ID: 23644684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.
    Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability investigations of zinc and cobalt precipitates immobilized by in situ bioprecipitation (ISBP) process.
    Satyawali Y; Schols E; Van Roy S; Dejonghe W; Diels L; Vanbroekhoven K
    J Hazard Mater; 2010 Sep; 181(1-3):217-25. PubMed ID: 20537795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of As from groundwater by in situ bioprecipitation and zero-valent iron.
    Tkaczynska A
    Water Sci Technol; 2013; 68(9):2055-60. PubMed ID: 24225108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biostimulation of sulfate reduction for in-situ metal(loid) precipitation at an industrial site in Flanders, Belgium.
    Pérez-de-Mora A; de Wilde H; Paulus D; Roosa S; Onderwater R; Paint Y; Avignone Rossa C; Farkas D
    Sci Total Environ; 2024 Jun; 929():172298. PubMed ID: 38615778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ metal precipitation in a zinc-contaminated, aerobic sandy aquifer by means of biological sulfate reduction.
    Janssen GM; Temminghoff EJ
    Environ Sci Technol; 2004 Jul; 38(14):4002-11. PubMed ID: 15298212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation potential of MTBE in a fractured chalk aquifer under aerobic conditions in long-term uncontaminated and contaminated aquifer microcosms.
    Shah NW; Thornton SF; Bottrell SH; Spence MJ
    J Contam Hydrol; 2009 Jan; 103(3-4):119-33. PubMed ID: 19008014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic control during aquifer storage recovery cycle tests in the Floridan Aquifer.
    Mirecki JE; Bennett MW; López-Baláez MC
    Ground Water; 2013; 51(4):539-49. PubMed ID: 23106789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of a reactive barrier and aquifer geology on metal distribution and mobility in a mine drainage impacted aquifer.
    Doerr NA; Ptacek CJ; Blowes DW
    J Contam Hydrol; 2005 Jun; 78(1-2):1-25. PubMed ID: 15949605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The diffusion-active permeable reactive barrier.
    Schwarz AO; Rittmann BE
    J Contam Hydrol; 2010 Mar; 112(1-4):155-62. PubMed ID: 20079951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier.
    Borden RC
    J Contam Hydrol; 2007 Oct; 94(1-2):13-33. PubMed ID: 17614158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable isotope fractionation related to technically enhanced bacterial sulphate degradation in lignite mining sediments.
    Knöller K; Jeschke C; Simon A; Gast M; Hoth N
    Isotopes Environ Health Stud; 2012; 48(1):76-88. PubMed ID: 22092249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ treatment of arsenic-contaminated groundwater by air sparging.
    Brunsting JH; McBean EA
    J Contam Hydrol; 2014 Apr; 159():20-35. PubMed ID: 24561624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of indigenous microbiota from heavily contaminated sediments in the bioprecipitation of arsenic.
    Rios-Valenciana EE; Briones-Gallardo R; Cházaro-Ruiz LF; Martínez-Villegas N; Celis LB
    J Hazard Mater; 2017 Oct; 339():114-121. PubMed ID: 28633082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remediation of arsenic-contaminated groundwater by in-situ stimulating biogenic precipitation of iron sulfides.
    Pi K; Wang Y; Xie X; Ma T; Liu Y; Su C; Zhu Y; Wang Z
    Water Res; 2017 Feb; 109():337-346. PubMed ID: 27926881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District, northwestern Bangladesh.
    Selim Reza AH; Jean JS; Yang HJ; Lee MK; Woodall B; Liu CC; Lee JF; Luo SD
    Water Res; 2010 Mar; 44(6):2021-37. PubMed ID: 20053416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benzene dynamics and biodegradation in alluvial aquifers affected by river fluctuations.
    Batlle-Aguilar J; Morasch B; Hunkeler D; Brouyère S
    Ground Water; 2014; 52(3):388-98. PubMed ID: 23721190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remediation of a marine shore tailings deposit and the importance of water-rock interaction on element cycling in the coastal aquifer.
    Dold B; Diaby N; Spangenberg JE
    Environ Sci Technol; 2011 Jun; 45(11):4876-83. PubMed ID: 21563818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.