These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23644843)

  • 1. Prominent electric properties of BiFeO₃ shells sputtered on ZnO-nanorod cores with LaNiO₃ buffer layers.
    Chiu KC; Yang TH; Wu JM
    Nanotechnology; 2013 Jun; 24(22):225602. PubMed ID: 23644843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of BiFeO3/ZnO core-shell hetero-structures using ZnO nanorod positive templates.
    Chen SW; Lee CC; Chen MT; Wu JM
    Nanotechnology; 2011 Mar; 22(11):115605. PubMed ID: 21301079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of electronic, ferroelectric and local electrical conduction behavior of RF sputtered BiFeO
    Hussain S; Awan SU; Mumtaz A; Siddique R; Aftab M; Hasanain SK
    Nanotechnology; 2024 May; 35(29):. PubMed ID: 38631335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy Storage Characteristics of BiFeO₃/BaTiO₃ Bi-Layers Integrated on Si.
    Liu M; Zhu H; Zhang Y; Xue C; Ouyang J
    Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Template-free fabrication of BiFeO
    Dhua S; Furuno H; Homma T; Saito N; Roy SC
    Nanotechnology; 2020 Aug; 31(35):355602. PubMed ID: 32380493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-Area Ferroelectric, Piezoelectric and Conductive Properties of Single BiFeO₃ Nanowire by Scanning Probe Microscopy.
    Wu S; Zhang J; Liu X; Lv S; Gao R; Cai W; Wang F; Fu C
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30717369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrathin oriented BiFeO3 films from deposition of atomic layers with greatly improved leakage and ferroelectric properties.
    Liu YT; Ku CS; Chiu SJ; Lee HY; Chen SY
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):443-9. PubMed ID: 24295033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial Charge Induced Magnetoelectric Coupling at BiFeO₃/BaTiO₃ Bilayer Interface.
    Gupta R; Chaudhary S; Kotnala RK
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8472-9. PubMed ID: 25856737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct and converse piezoelectric responses at the nanoscale from epitaxial BiFeO
    Vila-Fungueiriño JM; Gómez A; Antoja-Lleonart J; Gázquez J; Magén C; Noheda B; Carretero-Genevrier A
    Nanoscale; 2018 Nov; 10(43):20155-20161. PubMed ID: 30259954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and nanomechanical properties of BiFeO3 thin films deposited by radio frequency magnetron sputtering.
    Jian SR; Chang HW; Tseng YC; Chen PH; Juang JY
    Nanoscale Res Lett; 2013 Jun; 8(1):297. PubMed ID: 23799923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A plasma sputtering decoration route to producing thickness-tunable ZnO/TiO(2) core/shell nanorod arrays.
    Wang M; Huang C; Cao Y; Yu Q; Guo W; Liu Q; Liang J; Hong M
    Nanotechnology; 2009 Jul; 20(28):285311. PubMed ID: 19546501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the piezoelectric properties and voltage generation of flexible zinc oxide thin films.
    Laurenti M; Stassi S; Lorenzoni M; Fontana M; Canavese G; Cauda V; Pirri CF
    Nanotechnology; 2015 May; 26(21):215704. PubMed ID: 25943118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZnO thin film with nanorod arrays applied to fluid sensor.
    Water W; Chen SE; Meen TH; Ji LW
    Ultrasonics; 2012 Aug; 52(6):747-52. PubMed ID: 22406131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large piezoelectric response of BiFeO3/BaTiO3 polycrystalline films induced by the low-symmetry phase.
    Hou YF; Li WL; Zhang TD; Wang W; Cao WP; Liu XL; Fei WD
    Phys Chem Chem Phys; 2015 May; 17(17):11593-7. PubMed ID: 25866266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Poling-Induced Magnetoelectric Effect in Highly Strained Epitaxial BiFeO
    Li D; Zheng D; Gong J; Zheng W; Jin C; Bai H
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24331-24338. PubMed ID: 28649827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of the Properties of Direct-Current Magnetron-Sputtered Al-Doped ZnO Polycrystalline Films Containing Retained Ar Atoms Using 10-nm-Thick Buffer Layers.
    Nomoto J; Makino H; Nakajima T; Tsuchiya T; Yamamoto T
    ACS Omega; 2019 Sep; 4(11):14526-14536. PubMed ID: 31528807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single domain m-plane ZnO grown on m-plane sapphire by radio frequency magnetron sputtering.
    Lin BH; Liu WR; Lin CY; Hsu ST; Yang S; Kuo CC; Hsu CH; Hsieh WF; Chien FS; Chang CS
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5333-7. PubMed ID: 22989018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration-Friendly, Chemically Stoichiometric BiFeO
    Niu M; Zhu H; Wang Y; Yan J; Chen N; Yan P; Ouyang J
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33899-33907. PubMed ID: 32609491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method to improve electrical properties of BiFeO3 thin films.
    Wu J; Wang J; Xiao D; Zhu J
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1182-5. PubMed ID: 22416767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain engineering effects on electrical properties of lead-free piezoelectric thin films on Si wafers.
    Ohno T; Kamai Y; Oda Y; Sakamoto N; Matsuda T; Wakiya N; Suzuki H
    Acta Chim Slov; 2014; 61(3):453-6. PubMed ID: 25286200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.