BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 23644894)

  • 1. Autologous skin reconstruction by combining epidermis and acellular dermal matrix tissue derived from the skin of giant congenital melanocytic nevi.
    Liem PH; Morimoto N; Ito R; Kawai K; Suzuki S
    J Artif Organs; 2013 Sep; 16(3):332-42. PubMed ID: 23644894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical study on the role of platelet-rich plasma in human acellular dermal matrix with razor autologous skin graft repair of giant congenital pigmented nevus in children.
    Jin F; Li X; Chen J; Liu J; Wang Y
    J Plast Reconstr Aesthet Surg; 2024 Mar; 90():305-314. PubMed ID: 38394838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thickness of melanocytes in giant congenital melanocytic nevus for complete surgical excision: clinicopathological evaluation of 117 lesions according to the area and size.
    Kim JY; Lee SY; Kwak Y; Kim BJ
    BMC Surg; 2024 Mar; 24(1):90. PubMed ID: 38491443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acellular dermal matrix-assisted tissue expansion for giant congenital melanocytic nevi of the extremities and trunk in pediatric patients.
    Huang X; Shan S; Lu L; Jin R; Wang X; Yuan Z; Sun D; Chang M; Luo X
    Plast Reconstr Surg; 2024 Mar; ():. PubMed ID: 38546404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Giant Congenital Melanocytic Nevus (GCMN) - A New Hope for Targeted Therapy?
    Tchernev G; Lozev I; Pidakev I; Lotti T; Wollina U; Gianfaldoni S; Lotti J; França K; Batashki A; Maximov GK; Chokoeva A
    Open Access Maced J Med Sci; 2017 Jul; 5(4):549-550. PubMed ID: 28785360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histopathological characteristics analysis of giant melanocytic naevi in children.
    Chen W; Jiang X; Chen N; Zhang Q; Cai W
    J Cosmet Dermatol; 2024 Mar; 23(3):978-985. PubMed ID: 37933518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resurfacing of Sleeve-Like Circumferential Giant Congenital Melanocytic Nevi on the Upper Extremity With Pre-Expanded Pedicled Flap.
    Li J; Yang X; Ma J
    J Craniofac Surg; 2024 Jan-Feb 01; 35(1):e83-e85. PubMed ID: 37948614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of cryopreserved or freeze-dried decellularized human dermis for transplantation.
    Montagner G; Barbazza A; Pant M; Lugas AT; Serino G; Bignardi C; Terzini M; Vantini A; Stefanelli J; Trojan D
    Cell Tissue Bank; 2024 Jun; 25(2):685-695. PubMed ID: 38381276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of two common acellular methods on the physicochemical properties of dermal acellular matrix].
    Yang C; Guo J; Wang J; Fan J; Xing Y; Zhang L; An M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Oct; 38(5):911-918. PubMed ID: 34713659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant congenital melanocytic nevus in an Afghan child.
    Raufi N; Nemat A
    Clin Case Rep; 2022 Jan; 10(1):e05258. PubMed ID: 35028147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of three collagen scaffolds in comparison with native connective tissue: an in-vitro study.
    Solderer A; Widmer N; Gubler A; Fischer KR; Hicklin SP; Schmidlin PR
    Int J Implant Dent; 2023 Oct; 9(1):36. PubMed ID: 37819469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifactorial analysis of the surgical outcomes of giant congenital melanocytic nevi: Single versus serial tissue expansion.
    Kim MJ; Lee DH; Park DH
    Arch Plast Surg; 2020 Nov; 47(6):551-558. PubMed ID: 33238342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serial Tissue Expansion and Skin Grafts in the Management of a Giant Congenital Nevus of the Face: Review of Literature and Case Report.
    Sơn TT; Nghĩa PT; Dung PTV; Thuý TTH; Anh HT; Huy LA
    Arch Plast Surg; 2024 May; 51(3):290-294. PubMed ID: 38737851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skin Substitute Preparation Method Induces Immunomodulatory Changes in Co-Incubated Cells through Collagen Modification.
    Holl J; Pawlukianiec C; Corton Ruiz J; Groth D; Grubczak K; Hady HR; Dadan J; Reszec J; Czaban S; Kowalewski C; Moniuszko M; Eljaszewicz A
    Pharmaceutics; 2021 Dec; 13(12):. PubMed ID: 34959443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancements of 3D bioprinting in regenerative medicine: Exploring cell sources for organ fabrication.
    Ma Y; Deng B; He R; Huang P
    Heliyon; 2024 Feb; 10(3):e24593. PubMed ID: 38318070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue Engineering in Skin Substitute.
    Łabuś W; Kitala D; Szapski M; Klama-Baryła A; Kraut M; Smętek W
    Adv Exp Med Biol; 2021; 1345():193-208. PubMed ID: 34582024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The sustained release of basic fibroblast growth factor accelerates angiogenesis and the engraftment of the inactivated dermis by high hydrostatic pressure.
    Le TM; Morimoto N; Mitsui T; Notodihardjo SC; Munisso MC; Kakudo N; Kusumoto K
    PLoS One; 2019; 14(2):e0208658. PubMed ID: 30789932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water absorption by decellularized dermis.
    Zhang Y; Iwata T; Nam K; Kimura T; Wu P; Nakamura N; Hashimoto Y; Kishida A
    Heliyon; 2018 Apr; 4(4):e00600. PubMed ID: 29862362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melanin pigments in the melanocytic nevus regress spontaneously after inactivation by high hydrostatic pressure.
    Sakamoto M; Morimoto N; Jinno C; Mahara A; Ogino S; Suzuki S; Kusumoto K; Yamaoka T
    PLoS One; 2017; 12(11):e0186958. PubMed ID: 29091921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of Inactivated Human Skin Using High Hydrostatic Pressurization for Full-Thickness Skin Reconstruction.
    Liem PH; Morimoto N; Mahara A; Jinno C; Shima K; Ogino S; Sakamoto M; Kakudo N; Inoie M; Kusumoto K; Fujisato T; Suzuki S; Yamaoka T
    PLoS One; 2015; 10(7):e0133979. PubMed ID: 26226373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.