These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23645030)

  • 1. Spectroscopic exploring the affinities, characteristics, and mode of binding interaction of curcumin with DNA.
    Li XL; Hu YJ; Mi R; Li XY; Li PQ; Ouyang Y
    Mol Biol Rep; 2013 Jul; 40(7):4405-13. PubMed ID: 23645030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the strength, mode, dynamics, and kinetics of binding interaction of a cationic biological photosensitizer with DNA: implication on dissociation of the drug-DNA complex via detergent sequestration.
    Paul BK; Guchhait N
    J Phys Chem B; 2011 Oct; 115(41):11938-49. PubMed ID: 21899350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular spectroscopy evidence of berberine binding to DNA: comparative binding and thermodynamic profile of intercalation.
    Li XL; Hu YJ; Wang H; Yu BQ; Yue HL
    Biomacromolecules; 2012 Mar; 13(3):873-80. PubMed ID: 22316074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic investigation on the toxic interaction of melamine with herring sperm DNA.
    Sun Y; Liu R; Chi Z; Qin P; Fang X; Mou Y
    J Biochem Mol Toxicol; 2010; 24(5):323-9. PubMed ID: 20196162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the interactions of trans-resveratrol and curcumin with bovine α-lactalbumin by spectroscopic analysis and molecular docking.
    Mohammadi F; Moeeni M
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():358-66. PubMed ID: 25746281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic studies of interaction of chlorobenzylidine with DNA.
    Zhong W; Yu JS; Huang W; Ni K; Liang Y
    Biopolymers; 2001; 62(6):315-23. PubMed ID: 11857270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro studies on the behavior of salmeterol xinafoate and its interaction with calf thymus DNA by multi-spectroscopic techniques.
    Zhao T; Bi S; Wang Y; Wang T; Pang B; Gu T
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():198-204. PubMed ID: 24866086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive approach to ascertain the binding mode of curcumin with DNA.
    Haris P; Mary V; Aparna P; Dileep KV; Sudarsanakumar C
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():155-163. PubMed ID: 28033562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical studies on curcumin-deoxyribonucleic acid interaction: spectroscopic and calorimetric approach.
    Basu A; Kumar GS
    Int J Biol Macromol; 2013 Nov; 62():257-64. PubMed ID: 24041996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding properties of palmatine to DNA: spectroscopic and molecular modeling investigations.
    Mi R; Tu B; Bai XT; Chen J; Ouyang Y; Hu YJ
    Luminescence; 2015 Dec; 30(8):1344-51. PubMed ID: 25829078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematical investigation of binding interaction between novel ruthenium(II) arene complex with curcumin analogs and ctDNA.
    Huang S; Liang Y; Huang C; Su W; Lei X; Liu Y; Xiao Q
    Luminescence; 2016 Nov; 31(7):1384-1394. PubMed ID: 26923950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic studies on the binding interaction of phenothiazinium dyes toluidine blue O, azure A and azure B to DNA.
    Paul P; Suresh Kumar G
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 107():303-10. PubMed ID: 23434558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence interaction and determination of calf thymus DNA with two ethidium derivatives.
    Akbay N; Seferoğlu Z; Gök E
    J Fluoresc; 2009 Nov; 19(6):1045-51. PubMed ID: 19557506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on interaction between curcumin and pepsin by spectroscopic and docking methods.
    Ying M; Huang F; Ye H; Xu H; Shen L; Huan T; Huang S; Xie J; Tian S; Hu Z; He Z; Lu J; Zhou K
    Int J Biol Macromol; 2015 Aug; 79():201-8. PubMed ID: 25940524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncovalent interactions of bovine trypsin with curcumin and effect on stability, structure, and function.
    Rajabi M; Farhadian S; Shareghi B; Asgharzadeh S; Momeni L
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110287. PubMed ID: 31476687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic and viscometric elucidation of the interaction between a potential chloride channel blocker and calf-thymus DNA: the effect of medium ionic strength on the binding mode.
    Ganguly A; Ghosh S; Guchhait N
    Phys Chem Chem Phys; 2015 Jan; 17(1):483-92. PubMed ID: 25407825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic studies on the binding of a new quinolone antibacterial agent: sinafloxacin to DNA.
    Fei Y; Lu G; Fan G; Wu Y
    Anal Sci; 2009 Nov; 25(11):1333-8. PubMed ID: 19907091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlorobenzylidine-herring sperm DNA interaction: binding mode and thermodynamic studies.
    Zhong W; Yu JS; Liang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Apr; 59(6):1281-8. PubMed ID: 12659897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of dimerization on the interaction of ibuprofen drug with calf thymus DNA: Molecularmodeling and spectroscopic investigation.
    Shahabadi N; Shiri F; Hadidi S
    Nucleosides Nucleotides Nucleic Acids; 2018 Mar; 37(3):147-168. PubMed ID: 29465331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the interaction between ginsenoside Rh2 and calf thymus DNA by spectroscopic techniques.
    Wu D; Chen Z
    Luminescence; 2015 Dec; 30(8):1212-8. PubMed ID: 25727213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.