These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 23645189)
1. New group in the Leptospirillum clade: cultivation-independent community genomics, proteomics, and transcriptomics of the new species "Leptospirillum group IV UBA BS". Goltsman DS; Dasari M; Thomas BC; Shah MB; VerBerkmoes NC; Hettich RL; Banfield JF Appl Environ Microbiol; 2013 Sep; 79(17):5384-93. PubMed ID: 23645189 [TBL] [Abstract][Full Text] [Related]
2. Community genomic and proteomic analyses of chemoautotrophic iron-oxidizing "Leptospirillum rubarum" (Group II) and "Leptospirillum ferrodiazotrophum" (Group III) bacteria in acid mine drainage biofilms. Goltsman DS; Denef VJ; Singer SW; VerBerkmoes NC; Lefsrud M; Mueller RS; Dick GJ; Sun CL; Wheeler KE; Zemla A; Baker BJ; Hauser L; Land M; Shah MB; Thelen MP; Hettich RL; Banfield JF Appl Environ Microbiol; 2009 Jul; 75(13):4599-615. PubMed ID: 19429552 [TBL] [Abstract][Full Text] [Related]
3. Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Tyson GW; Lo I; Baker BJ; Allen EE; Hugenholtz P; Banfield JF Appl Environ Microbiol; 2005 Oct; 71(10):6319-24. PubMed ID: 16204553 [TBL] [Abstract][Full Text] [Related]
4. Multi-omics Reveals the Lifestyle of the Acidophilic, Mineral-Oxidizing Model Species Leptospirillum ferriphilum Christel S; Herold M; Bellenberg S; El Hajjami M; Buetti-Dinh A; Pivkin IV; Sand W; Wilmes P; Poetsch A; Dopson M Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150517 [No Abstract] [Full Text] [Related]
5. Environmental transcriptome analysis reveals physiological differences between biofilm and planktonic modes of life of the iron oxidizing bacteria Leptospirillum spp. in their natural microbial community. Moreno-Paz M; Gómez MJ; Arcas A; Parro V BMC Genomics; 2010 Jun; 11():404. PubMed ID: 20576116 [TBL] [Abstract][Full Text] [Related]
6. Heterotrophic archaea contribute to carbon cycling in low-pH, suboxic biofilm communities. Justice NB; Pan C; Mueller R; Spaulding SE; Shah V; Sun CL; Yelton AP; Miller CS; Thomas BC; Shah M; VerBerkmoes N; Hettich R; Banfield JF Appl Environ Microbiol; 2012 Dec; 78(23):8321-30. PubMed ID: 23001646 [TBL] [Abstract][Full Text] [Related]
7. Culture-dependent hunt and characterization of iron-oxidizing bacteria in Baiyin Copper Mine, China, and their application in metals extraction. Sajjad W; Zheng G; Ma X; Rafiq M; Irfan M; Xu W; Ali B J Basic Microbiol; 2019 Mar; 59(3):323-336. PubMed ID: 30592309 [TBL] [Abstract][Full Text] [Related]
8. Community transcriptomics reveals unexpected high microbial diversity in acidophilic biofilm communities. Aliaga Goltsman DS; Comolli LR; Thomas BC; Banfield JF ISME J; 2015 Mar; 9(4):1014-23. PubMed ID: 25361394 [TBL] [Abstract][Full Text] [Related]
9. Community structure and metabolism through reconstruction of microbial genomes from the environment. Tyson GW; Chapman J; Hugenholtz P; Allen EE; Ram RJ; Richardson PM; Solovyev VV; Rubin EM; Rokhsar DS; Banfield JF Nature; 2004 Mar; 428(6978):37-43. PubMed ID: 14961025 [TBL] [Abstract][Full Text] [Related]
11. Automated Microscopic Analysis of Metal Sulfide Colonization by Acidophilic Microorganisms. Bellenberg S; Buetti-Dinh A; Galli V; Ilie O; Herold M; Christel S; Boretska M; Pivkin IV; Wilmes P; Sand W; Vera M; Dopson M Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30076195 [TBL] [Abstract][Full Text] [Related]
12. Quantitative proteomic analyses of the response of acidophilic microbial communities to different pH conditions. Belnap CP; Pan C; Denef VJ; Samatova NF; Hettich RL; Banfield JF ISME J; 2011 Jul; 5(7):1152-61. PubMed ID: 21228889 [TBL] [Abstract][Full Text] [Related]
13. Oxygen-dependent niche formation of a pyrite-dependent acidophilic consortium built by archaea and bacteria. Ziegler S; Dolch K; Geiger K; Krause S; Asskamp M; Eusterhues K; Kriews M; Wilhelms-Dick D; Goettlicher J; Majzlan J; Gescher J ISME J; 2013 Sep; 7(9):1725-37. PubMed ID: 23619304 [TBL] [Abstract][Full Text] [Related]
14. Cultivation-dependent and cultivation-independent characterization of the microbial community in acid mine drainage associated with acidic Pb/Zn mine tailings at Lechang, Guangdong, China. Tan GL; Shu WS; Hallberg KB; Li F; Lan CY; Huang LN FEMS Microbiol Ecol; 2007 Jan; 59(1):118-26. PubMed ID: 17059483 [TBL] [Abstract][Full Text] [Related]
16. Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 degrees C. Coram NJ; Rawlings DE Appl Environ Microbiol; 2002 Feb; 68(2):838-45. PubMed ID: 11823226 [TBL] [Abstract][Full Text] [Related]
18. Comparison of environmental and isolate Sulfobacillus genomes reveals diverse carbon, sulfur, nitrogen, and hydrogen metabolisms. Justice NB; Norman A; Brown CT; Singh A; Thomas BC; Banfield JF BMC Genomics; 2014 Dec; 15():1107. PubMed ID: 25511286 [TBL] [Abstract][Full Text] [Related]
19. Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap. Zhang X; Niu J; Liang Y; Liu X; Yin H BMC Genet; 2016 Jan; 17():21. PubMed ID: 26781463 [TBL] [Abstract][Full Text] [Related]
20. Microbial Ecology and Evolution in the Acid Mine Drainage Model System. Huang LN; Kuang JL; Shu WS Trends Microbiol; 2016 Jul; 24(7):581-593. PubMed ID: 27050827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]