BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 23645383)

  • 1. Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways.
    van der Veen D; Lo J; Brown SD; Johnson CM; Tschaplinski TJ; Martin M; Engle NL; van den Berg RA; Argyros AD; Caiazza NC; Guss AM; Lynd LR
    J Ind Microbiol Biotechnol; 2013 Jul; 40(7):725-34. PubMed ID: 23645383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum.
    Papanek B; Biswas R; Rydzak T; Guss AM
    Metab Eng; 2015 Nov; 32():49-54. PubMed ID: 26369438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes.
    Argyros DA; Tripathi SA; Barrett TF; Rogers SR; Feinberg LF; Olson DG; Foden JM; Miller BB; Lynd LR; Hogsett DA; Caiazza NC
    Appl Environ Microbiol; 2011 Dec; 77(23):8288-94. PubMed ID: 21965408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405.
    Islam R; Cicek N; Sparling R; Levin D
    Appl Microbiol Biotechnol; 2006 Sep; 72(3):576-83. PubMed ID: 16685495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum.
    Biswas R; Prabhu S; Lynd LR; Guss AM
    PLoS One; 2014; 9(2):e86389. PubMed ID: 24516531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture.
    Stevenson DM; Weimer PJ
    Appl Environ Microbiol; 2005 Aug; 71(8):4672-8. PubMed ID: 16085862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic microplate assay for direct microbial conversion of switchgrass and Avicel using Clostridium thermocellum.
    Oguntimein GB; Rodriguez M; Dumitrache A; Shollenberger T; Decker SR; Davison BH; Brown SD
    Biotechnol Lett; 2018 Feb; 40(2):303-308. PubMed ID: 29124514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. End-product induced metabolic shifts in Clostridium thermocellum ATCC 27405.
    Rydzak T; Levin DB; Cicek N; Sparling R
    Appl Microbiol Biotechnol; 2011 Oct; 92(1):199-209. PubMed ID: 21837436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405).
    Ellis LD; Holwerda EK; Hogsett D; Rogers S; Shao X; Tschaplinski T; Thorne P; Lynd LR
    Bioresour Technol; 2012 Jan; 103(1):293-9. PubMed ID: 22055095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elimination of formate production in Clostridium thermocellum.
    Rydzak T; Lynd LR; Guss AM
    J Ind Microbiol Biotechnol; 2015 Sep; 42(9):1263-72. PubMed ID: 26162629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Roles of Nicotinamide Adenine Dinucleotide Phosphate Reoxidation and Ammonium Assimilation in the Secretion of Amino Acids as Byproducts of Clostridium thermocellum.
    Yayo J; Rydzak T; Kuil T; Karlsson A; Harding DJ; Guss AM; van Maris AJA
    Appl Environ Microbiol; 2023 Jan; 89(1):e0175322. PubMed ID: 36625594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum.
    Thompson RA; Layton DS; Guss AM; Olson DG; Lynd LR; Trinh CT
    Metab Eng; 2015 Nov; 32():207-219. PubMed ID: 26497628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formate synthesis by Clostridium thermocellum during anaerobic fermentation.
    Sparling R; Islam R; Cicek N; Carere C; Chow H; Levin DB
    Can J Microbiol; 2006 Jul; 52(7):681-8. PubMed ID: 16917525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening of thermophilic anaerobic bacteria for solid substrate cultivation on lignocellulosic substrates.
    Chinn MS; Nokes SE; Strobel HJ
    Biotechnol Prog; 2006; 22(1):53-9. PubMed ID: 16454492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the metabolic inhibition observed in solid-substrate cultivation of Clostridium thermocellum on cellulose.
    Dharmagadda VS; Nokes SE; Strobel HJ; Flythe MD
    Bioresour Technol; 2010 Aug; 101(15):6039-44. PubMed ID: 20362436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo evolution of lactic acid hyper-tolerant Clostridium thermocellum.
    Mazzoli R; Olson DG; Concu AM; Holwerda EK; Lynd LR
    N Biotechnol; 2022 Mar; 67():12-22. PubMed ID: 34915174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum.
    Shao X; Raman B; Zhu M; Mielenz JR; Brown SD; Guss AM; Lynd LR
    Appl Microbiol Biotechnol; 2011 Nov; 92(3):641-52. PubMed ID: 21874277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.
    Lo J; Zheng T; Hon S; Olson DG; Lynd LR
    J Bacteriol; 2015 Apr; 197(8):1386-93. PubMed ID: 25666131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis.
    Raman B; Pan C; Hurst GB; Rodriguez M; McKeown CK; Lankford PK; Samatova NF; Mielenz JR
    PLoS One; 2009; 4(4):e5271. PubMed ID: 19384422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of process conditions on end product formation from Clostridium thermocellum 27405 in solid substrate cultivation on paper pulp sludge.
    Chinn MS; Nokes SE; Strobel HJ
    Bioresour Technol; 2007 Aug; 98(11):2184-93. PubMed ID: 17107786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.