These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 23645631)
1. Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants. Li JF; Chung HS; Niu Y; Bush J; McCormack M; Sheen J Plant Cell; 2013 May; 25(5):1507-22. PubMed ID: 23645631 [TBL] [Abstract][Full Text] [Related]
2. Epitope-tagged protein-based artificial miRNA screens for optimized gene silencing in plants. Li JF; Zhang D; Sheen J Nat Protoc; 2014 Apr; 9(4):939-49. PubMed ID: 24675734 [TBL] [Abstract][Full Text] [Related]
3. A Simple Protoplast-Based Method for Screening Potent Artificial miRNA for Maximal Gene Silencing in Arabidopsis. Zhang N; Zhang D; Li JF Curr Protoc Mol Biol; 2017 Jan; 117():26.9.1-26.9.10. PubMed ID: 28060406 [TBL] [Abstract][Full Text] [Related]
4. Engineering Artificial MicroRNAs for Multiplex Gene Silencing and Simplified Transgenic Screen. Zhang N; Zhang D; Chen SL; Gong BQ; Guo Y; Xu L; Zhang XN; Li JF Plant Physiol; 2018 Nov; 178(3):989-1001. PubMed ID: 30291175 [TBL] [Abstract][Full Text] [Related]
5. Engineered Artificial MicroRNA Precursors Facilitate Cloning and Gene Silencing in Arabidopsis and Rice. Zhang D; Zhang N; Shen W; Li JF Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31717686 [TBL] [Abstract][Full Text] [Related]
6. An in vivo transient expression system can be applied for rapid and effective selection of artificial microRNA constructs for plant stable genetic transformation. Bhagwat B; Chi M; Su L; Tang H; Tang G; Xiang Y J Genet Genomics; 2013 May; 40(5):261-70. PubMed ID: 23706301 [TBL] [Abstract][Full Text] [Related]
7. Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Ai T; Zhang L; Gao Z; Zhu CX; Guo X Plant Biol (Stuttg); 2011 Mar; 13(2):304-16. PubMed ID: 21309977 [TBL] [Abstract][Full Text] [Related]
8. Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Khraiwesh B; Ossowski S; Weigel D; Reski R; Frank W Plant Physiol; 2008 Oct; 148(2):684-93. PubMed ID: 18753280 [TBL] [Abstract][Full Text] [Related]
9. A Resource for Inactivation of MicroRNAs Using Short Tandem Target Mimic Technology in Model and Crop Plants. Peng T; Qiao M; Liu H; Teotia S; Zhang Z; Zhao Y; Wang B; Zhao D; Shi L; Zhang C; Le B; Rogers K; Gunasekara C; Duan H; Gu Y; Tian L; Nie J; Qi J; Meng F; Huang L; Chen Q; Wang Z; Tang J; Tang X; Lan T; Chen X; Wei H; Zhao Q; Tang G Mol Plant; 2018 Nov; 11(11):1400-1417. PubMed ID: 30243763 [TBL] [Abstract][Full Text] [Related]
10. Effects of the sequence characteristics of miRNAs on multi-viral resistance mediated by single amiRNAs in transgenic tobacco. Song YZ; Han QJ; Jiang F; Sun RZ; Fan ZH; Zhu CX; Wen FJ Plant Physiol Biochem; 2014 Apr; 77():90-8. PubMed ID: 24561715 [TBL] [Abstract][Full Text] [Related]
11. Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana. Eamens AL; Agius C; Smith NA; Waterhouse PM; Wang MB Mol Plant; 2011 Jan; 4(1):157-70. PubMed ID: 20943811 [TBL] [Abstract][Full Text] [Related]
12. Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric miRNA precursors. Carbonell A; Fahlgren N; Mitchell S; Cox KL; Reilly KC; Mockler TC; Carrington JC Plant J; 2015 Jun; 82(6):1061-1075. PubMed ID: 25809382 [TBL] [Abstract][Full Text] [Related]
13. RNA interference in designing transgenic crops. Ali N; Datta SK; Datta K GM Crops; 2010; 1(4):207-13. PubMed ID: 21844675 [TBL] [Abstract][Full Text] [Related]
14. Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense single-stranded RNA plant virus. Kung YJ; Lin SS; Huang YL; Chen TC; Harish SS; Chua NH; Yeh SD Mol Plant Pathol; 2012 Apr; 13(3):303-17. PubMed ID: 21929564 [TBL] [Abstract][Full Text] [Related]
15. Transgene-free, virus-based gene silencing in plants by artificial microRNAs derived from minimal precursors. Cisneros AE; Martín-García T; Primc A; Kuziuta W; Sánchez-Vicente J; Aragonés V; Daròs JA; Carbonell A Nucleic Acids Res; 2023 Oct; 51(19):10719-10736. PubMed ID: 37713607 [TBL] [Abstract][Full Text] [Related]
16. New generation of artificial MicroRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis. Carbonell A; Takeda A; Fahlgren N; Johnson SC; Cuperus JT; Carrington JC Plant Physiol; 2014 May; 165(1):15-29. PubMed ID: 24647477 [TBL] [Abstract][Full Text] [Related]
17. Design, Construction, and Validation of Artificial MicroRNA Vectors Using Agrobacterium-Mediated Transient Expression System. Bhagwat B; Chi M; Han D; Tang H; Tang G; Xiang Y Methods Mol Biol; 2016; 1405():149-62. PubMed ID: 26843173 [TBL] [Abstract][Full Text] [Related]
18. Virus-Based microRNA Silencing in Plants. Zhao J; Wang G; Jiang H; Liu T; Dong J; Wang Z; Zhang B; Song J Methods Mol Biol; 2020; 2172():243-257. PubMed ID: 32557374 [TBL] [Abstract][Full Text] [Related]
19. Evaluation and identification of candidate genes for artificial microRNA-mediated resistance to tomato spotted wilt virus. Mitter N; Zhai Y; Bai AX; Chua K; Eid S; Constantin M; Mitchell R; Pappu HR Virus Res; 2016 Jan; 211():151-8. PubMed ID: 26454192 [TBL] [Abstract][Full Text] [Related]
20. The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. Eamens AL; Smith NA; Curtin SJ; Wang MB; Waterhouse PM RNA; 2009 Dec; 15(12):2219-35. PubMed ID: 19861421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]