BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23646529)

  • 1. Hydrothermal preparation of copper doped NaTaO3 nanoparticles and study on the photocatalytic mechanism.
    Liu Y; Su Y; Han H; Wang X
    J Nanosci Nanotechnol; 2013 Feb; 13(2):853-7. PubMed ID: 23646529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and photocatalytic performance of iodine-doped NaTaO3 nanoparticles.
    Han P; Su Y; Meng Y; Wang S; Jia Q; Wang X
    J Nanosci Nanotechnol; 2011 Nov; 11(11):9600-6. PubMed ID: 22413255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and optical properties of Bi3+ doped NaTaO3 nano-size photocatalysts.
    Wang X; Bai H; Meng Y; Zhao Y; Tang C; Gao Y
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1788-93. PubMed ID: 20355575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The atomic-scale structure of LaCrO
    Sudrajat H; Zhou Y; Sasaki T; Ichikuni N; Onishi H
    Phys Chem Chem Phys; 2019 Feb; 21(9):5148-5157. PubMed ID: 30773578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced visible-light-driven photocatalytic activity in yellow and black orthorhombic NaTaO3 nanocubes by surface modification and simultaneous N/Ta(4+) co-doping.
    Zhou Y; Wang Y; Wen T; Chang B; Guo Y; Lin Z; Yang B
    J Colloid Interface Sci; 2016 Jan; 461():185-194. PubMed ID: 26397927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetic stability, oxidation states, and electronic structure of Bi-doped NaTaO3: a first-principles hybrid functional study.
    Joo PH; Behtash M; Yang K
    Phys Chem Chem Phys; 2016 Jan; 18(2):857-65. PubMed ID: 26646215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mono- and co-doped NaTaO3 for visible light photocatalysis.
    Kanhere P; Shenai P; Chakraborty S; Ahuja R; Zheng J; Chen Z
    Phys Chem Chem Phys; 2014 Aug; 16(30):16085-94. PubMed ID: 24965846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Spectral Characteristics and Catalytic Performances of SO2-4/Ce-TiO2 with Visible Light Response].
    Ma HY; Liu ZJ; Cheng L; Yang JC; Zhang QC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Apr; 36(4):1133-8. PubMed ID: 30052013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity.
    Wang DH; Jia L; Wu XL; Lu LQ; Xu AW
    Nanoscale; 2012 Jan; 4(2):576-84. PubMed ID: 22143193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ag-Decorated ATaO3 (A = K, Na) Nanocube Plasmonic Photocatalysts with Enhanced Photocatalytic Water-Splitting Properties.
    Xu D; Yang S; Jin Y; Chen M; Fan W; Luo B; Shi W
    Langmuir; 2015 Sep; 31(35):9694-9. PubMed ID: 26280571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Band gap engineering of NaTaO3 using density functional theory: a charge compensated codoping strategy.
    Modak B; Srinivasu K; Ghosh SK
    Phys Chem Chem Phys; 2014 Aug; 16(32):17116-24. PubMed ID: 25007948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of g-C3N4/NaTaO3 Hybrid Composite Photocatalysts and Their Photocatalytic Activity Under Simulated Solar Light Irradiation.
    Kim TH; Jo YH; Soo-Wohn ; Adhikari R; Cho SH
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7125-9. PubMed ID: 26716296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of N-doped CaNb2O6 nanoplates with ellipsoid-like morphology and their photocatalytic activities under visible-light irradiation.
    Cho IS; Kim DW; Noh TH; Lee S; Yim DK; Hong KS
    J Nanosci Nanotechnol; 2010 Feb; 10(2):1196-202. PubMed ID: 20352778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Photocatalytic Hydrogen Production Performance Over NaTaO₃/Reduced Graphene Oxide Composite Photocatalyst.
    Huang L; He H; Zhang B; Tan S; Qi J
    J Nanosci Nanotechnol; 2018 Jul; 18(7):4982-4986. PubMed ID: 29442682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of synergy on the visible light activity of B, N and Fe co-doped TiO2 for the degradation of MO.
    Xing M; Wu Y; Zhang J; Chen F
    Nanoscale; 2010 Jul; 2(7):1233-9. PubMed ID: 20648355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosted Visible-Light Photodegradation of Methylene Blue by V and Co Co-Doped TiO₂.
    Lv T; Zhao J; Chen M; Shen K; Zhang D; Zhang J; Zhang G; Liu Q
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30314386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient degradation of Methylene Blue dye over highly reactive Cu doped strontium titanate (SrTiO3) nanoparticles photocatalyst under visible light.
    Rahman QI; Ahmad M; Misra SK; Lohani M
    J Nanosci Nanotechnol; 2012 Sep; 12(9):7181-6. PubMed ID: 23035450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosting the photocatalytic properties of NaTaO
    Puga F; Navío JA; Hidalgo MC
    Photochem Photobiol Sci; 2023 Mar; 22(3):549-566. PubMed ID: 36352304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of boron-doped porous titania networks containing gold nanoparticles with enhanced visible-light photocatalytic activity.
    Wang X; Blackford M; Prince K; Caruso RA
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):476-82. PubMed ID: 22242543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and visible light induced photocatalytic activity of C-NaTaO3 and C-NaTaO3-Cl-TiO2 composite.
    Wu X; Yin S; Dong Q; Sato T
    Phys Chem Chem Phys; 2013 Dec; 15(47):20633-40. PubMed ID: 24189574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.